6,077 research outputs found

    Hydrodynamic flow of expanding Bose-Einstein condensates

    Full text link
    We study expansion of quasi-one-dimensional Bose-Einstein condensate (BEC) after switching off the confining harmonic potential. Exact solution of dynamical equations is obtained in framework of the hydrodynamic approximation and it is compared with the direct numerical simulation of the full problem showing excellent agreement at realistic values of physical parameters. We analyze the maximum of the current density and estimate the velocity of expansion. The results of the 1D analysis provides also qualitative understanding of some properties of BEC expansion observed in experiments.Comment: 5 pages, 3 figures, RevTeX4. To appear in Physical Review

    Evolution and global collapse of trapped Bose condensates under variations of the scattering length

    Full text link
    We develop the idea of selectively manipulating the condensate in a trapped Bose-condensed gas, without perturbing the thermal cloud. The idea is based on the possibility to modify the mean field interaction between atoms (scattering length) by nearly resonant incident light or by spatially uniform change of the trapping magnetic field. For the gas in the Thomas-Fermi regime we find analytical scaling solutions for the condensate wavefunction evolving under arbitrary variations of the scattering length aa. The change of aa from positive to negative induces a global collapse of the condensate, and the final stages of the collapse will be governed by intrinsic decay processes.Comment: 4 pages, LaTeX, other comments are at http://WWW.amolf.nl/departments/quantumgassen/TITLE.HTM

    Simulations of thermal Bose fields in the classical limit

    Get PDF
    We demonstrate that the time-dependent projected Gross-Pitaevskii equation derived earlier [Davis, et al., J. Phys. B 34, 4487 (2001)] can represent the highly occupied modes of a homogeneous, partially-condensed Bose gas. We find that this equation will evolve randomised initial wave functions to equilibrium, and compare our numerical data to the predictions of a gapless, second-order theory of Bose-Einstein condensation [S. A. Morgan, J. Phys. B 33, 3847 (2000)]. We find that we can determine the temperature of the equilibrium state when this theory is valid. Outside the range of perturbation theory we describe how to measure the temperature of our simulations. We also determine the dependence of the condensate fraction and specific heat on temperature for several interaction strengths, and observe the appearance of vortex networks. As the Gross-Pitaevskii equation is non-perturbative, we expect that it can describe the correct thermal behaviour of a Bose gas as long as all relevant modes are highly occupied.Comment: 15 pages, 12 figures, revtex4, follow up to Phys. Rev. Lett. 87 160402 (2001). v2: Modified after referee comments. Extra data added to two figures, section on temperature determination expande

    Giant mass and anomalous mobility of particles in fermionic systems

    Full text link
    We calculate the mobility of a heavy particle coupled to a Fermi sea within a non-perturbative approach valid at all temperatures. The interplay of particle recoil and of strong coupling effects, leading to the orthogonality catastrophe for an infinitely heavy particle, is carefully taken into account. We find two novel types of strong coupling effects: a new low energy scale T⋆T^{\star} and a giant mass renormalization in the case of either near-resonant scattering or a large transport cross section σ\sigma. The mobility is shown to obey two different power laws below and above T⋆T^{\star}. For σ≫λf2\sigma\gg\lambda_f^2, where λf\lambda_f is the Fermi wave length, an exponentially large effective mass suppresses the mobility.Comment: 4 pages, 4 figure

    The transverse breathing mode of an elongated Bose-Einstein condensate

    Full text link
    We study experimentally the transverse monopole mode of an elongated rubidium condensate. Due to the scaling invariance of the non-linear Schr\"odinger (Gross-Pitaevski) equation, the oscillation is monochromatic and sinusoidal at short times, even under strong excitation. For ultra-low temperatures, the quality factor Q=ω0/γ0Q=\omega_0/\gamma_0 can exceed 2000, where ω0\omega_0 and γ0\gamma_0 are the mode angular frequency and damping rate. This value is much larger than any previously reported for other eigenmodes of a condensate. We also present the temperature variation of ω0\omega_0 and γ0\gamma_0.Comment: 4 pages, 4 figures, submitted to PR

    Magnetic polarons in doped 1D antiferromagnetic chain

    Full text link
    The structure of magnetic polarons (ferrons) is studied for an 1D antiferromagnetic chain doped by non-magnetic donor impurities. The conduction electrons are assumed to be bound by the impurities. Such a chain can be described as a set of ferrons at the antiferromagnetic background. We found that two types of ferrons can exist in the system. The ground state of the chain corresponds to the ferrons with the sizes of the order of the localization length of the electron near the impurity. The ferrons of the second type produce a more extended distortion of spins in the chain. They are stable within a finite domain of the system parameters and can be treated as excitations above the ground state. The ferrons in the excited states can appear in pairs only. The energy of the excited states decreases with the growth in density of impurities. This can be interpreted as a manifestation of an attractive interaction between ferrons.Comment: 6 pages, 5 figures, RevTex4, submitted to PR

    Jahn-Teller distortions and phase separation in doped manganites

    Full text link
    A "minimal model" of the Kondo-lattice type is used to describe a competition between the localization and metallicity in doped manganites and related magnetic oxides with Jahn-Teller ions. It is shown that the number of itinerant charge carriers can be significantly lower than that implied by the doping level x. A strong tendency to the phase separation is demonstrated for a wide range of intermediate doping concentrations vanishing at low and high doping. The phase diagram of the model in the x-T plane is constructed. At low temperatures, the system is in a state with a long-range magnetic order: antiferromagnetic (AF), ferromagnetic (FM), or AF-FM phase separated (PS) state. At high temperatures, there can exist two types of the paramagnetic (PM) state with zero and nonzero density of the itinerant electrons. In the intermediate temperature range, the phase diagram includes different kinds of the PS states: AF-FM, FM-PM, and PM with different content of itinerant electrons. The applied magnetic field changes the phase diagram favoring the FM ordering. It is shown that the variation of temperature or magnetic field can induce the metal-insulator transition in a certain range of doping levels.Comment: 14 pages, 7 figures, submitted to Phys. Rev. B.; v.2 contains the changes introduced according to comments of the PRB Referees; in v. 3, some misprints are correcte

    Phase diagram and isotope effect in (PrEu)_0.7Ca_0.3CoO_3 cobaltites exhibiting spin-state transitions

    Full text link
    We present the study of magnetization, thermal expansion, specific heat, resistivity, and a.c. susceptibility of (Pr1−y_{1-y}Euy_y)0.7_{0.7}Ca0.3_{0.3}CoO3_3 cobaltites. The measurements were performed on ceramic samples with y=0.12−0.26y = 0.12 - 0.26 and y=1y = 1. Based on these results, we construct the phase diagram, including magnetic and spin-state transitions. The transition from the low- to intermediate-spin state is observed for the samples with y>0.18y > 0.18, whereas for a lower Eu-doping level, there are no spin-state transitions, but a crossover between the ferromagnetic and paramagnetic states occurs. The effect of oxygen isotope substitution along with Eu doping on the magnetic/spin state is discussed. The oxygen-isotope substitution (16^{16}O by 18^{18}O) is found to shift both the magnetic and spin-state phase boundaries to lower Eu concentrations. The isotope effect on the spin-state transition temperature (y>0.18y > 0.18) is rather strong, but it is much weaker for the transition to a ferromagnetic state (y<0.18y < 0.18). The ferromagnetic ordering in the low-Eu doped samples is shown to be promoted by the Co4+^{4+} ions, which favor the formation of the intermediate-spin state of neighboring Co3+^{3+} ions.Comment: 13 pages, including 11 figures, to be published in Phys. Rev.
    • …
    corecore