3 research outputs found

    Real-time Artificial Intelligence for Accelerator Control: A Study at the Fermilab Booster

    Full text link
    We describe a method for precisely regulating the gradient magnet power supply at the Fermilab Booster accelerator complex using a neural network trained via reinforcement learning. We demonstrate preliminary results by training a surrogate machine-learning model on real accelerator data to emulate the Booster environment, and using this surrogate model in turn to train the neural network for its regulation task. We additionally show how the neural networks to be deployed for control purposes may be compiled to execute on field-programmable gate arrays. This capability is important for operational stability in complicated environments such as an accelerator facility.Comment: 16 pages, 10 figures. Submitted to Physical Review Accelerators and Beams. For associated dataset and data sheet see http://doi.org/10.5281/zenodo.408898

    BOOSTR: A Dataset for Accelerator Control Systems

    No full text
    The Booster Operation Optimization Sequential Time-series for Regression (BOOSTR) dataset was created to provide a cycle-by-cycle time series of readings and settings from instruments and controllable devices of the Booster, Fermilab’s Rapid-Cycling Synchrotron (RCS) operating at 15 Hz. BOOSTR provides a time series from 55 device readings and settings that pertain most directly to the high-precision regulation of the Booster’s gradient magnet power supply (GMPS). To our knowledge, this is one of the first well-documented datasets of accelerator device parameters made publicly available. We are releasing it in the hopes that it can be used to demonstrate aspects of artificial intelligence for advanced control systems, such as reinforcement learning and autonomous anomaly detection

    DeepAdversaries: Examining the Robustness of Deep Learning Models for Galaxy Morphology Classification

    Full text link
    With increased adoption of supervised deep learning methods for processing and analysis of cosmological survey data, the assessment of data perturbation effects (that can naturally occur in the data processing and analysis pipelines) and the development of methods that increase model robustness are increasingly important. In the context of morphological classification of galaxies, we study the effects of perturbations in imaging data. In particular, we examine the consequences of using neural networks when training on baseline data and testing on perturbed data. We consider perturbations associated with two primary sources: 1) increased observational noise as represented by higher levels of Poisson noise and 2) data processing noise incurred by steps such as image compression or telescope errors as represented by one-pixel adversarial attacks. We also test the efficacy of domain adaptation techniques in mitigating the perturbation-driven errors. We use classification accuracy, latent space visualizations, and latent space distance to assess model robustness. Without domain adaptation, we find that processing pixel-level errors easily flip the classification into an incorrect class and that higher observational noise makes the model trained on low-noise data unable to classify galaxy morphologies. On the other hand, we show that training with domain adaptation improves model robustness and mitigates the effects of these perturbations, improving the classification accuracy by 23% on data with higher observational noise. Domain adaptation also increases by a factor of ~2.3 the latent space distance between the baseline and the incorrectly classified one-pixel perturbed image, making the model more robust to inadvertent perturbations.Comment: 20 pages, 6 figures, 5 tables; accepted in MLS
    corecore