7 research outputs found
Successful Outcome of Severe Intra-cerebral Bleeding Associated with Acquired Factor V Inhibition: Utilization of Multiple Therapeutic Agents
A 78-year-old male presented to the emergency department due to repeated episodes of syncope over the last 3 days. Physical examination during admission revealed pallour and extensive ecchymosis in his left hemithorax and left thigh. The rest of the clinical and neurological examination revealed no pathological finding
New generation genetic testing entering the clinic
New generation sequencing (NGS) genetic testing is a powerful diagnostic tool and is increasingly used in the clinical workup of patients, especially in unusual presentations or where a positive family history suggests heritable disease. This review addresses the NGS technologies Targeted sequencing (TS), Whole exome sequencing (WES), Whole genome sequencing (WGS), and the use of gene panels or gene lists for clinical diagnostic purposes. These methods primarily assess nucleotide sequence but can also detect copy number variants and many tandem repeat expansions, greatly simplifying diagnostic algorithms for movement disorders. Studies evaluating the efficacy of NGS in diagnosing movement disorders have reported a diagnostic yield of up to 10.1% for familial and 15.7% for early-onset PD, 11.7–37.5% for dystonia, 12.1–61.8% for ataxia/spastic paraplegia and 11.3–28% for combined movement disorders. Patient selection and stringency in the interpretation of the detected variants and genotypes affect diagnostic yield. Careful comparison of the patient's or family's disease features with the previously reported phenotype associated with the same variant or gene can avoid false-positive diagnoses, although some genes are implicated in various phenotypes. Moving from TS to WES and WGS increases the number of patients correctly diagnosed, but for many patients, a genetic cause cannot be identified today. However, new genetically defined entities are discovered at rapid pace, and genetic databases and our knowledge of genotype-phenotype correlations expand steadily. We discuss the need for clear communication of genetic results and suggest a list of aspects to consider when reporting neurogenetic disorders using NGS testing
MAP3K6 Mutations in a Neurovascular Disease Causing Stroke, Cognitive Impairment, and Tremor
Objective To describe a possible novel genetic mechanism for cerebral small vessel disease (cSVD) and stroke. Methods We studied a Swedish kindred with ischemic stroke and intracerebral hemorrhage, tremor, dysautonomia, and mild cognitive decline. Members were examined clinically, radiologically, and by histopathology. Genetic workup included whole-exome sequencing (WES) and whole-genome sequencing (WGS) and intrafamilial cosegregation analyses. Results Fifteen family members were examined clinically. Twelve affected individuals had white matter hyperintensities and 1 or more of (1) stroke episodes, (2) clinically silent lacunar ischemic lesions, and (3) cognitive dysfunction. All affected individuals had tremor and/or atactic gait disturbance. Mild symmetric basal ganglia calcifications were seen in 3 affected members. Postmortem examination of 1 affected member showed pathologic alterations in both small and large arteries the brain. Skin biopsies of 3 affected members showed extracellular amorphous deposits within the subepidermal zone, which may represent degenerated arterioles. WES or WGS did not reveal any potentially disease-causing variants in known genes for cSVDs or idiopathic basal ganglia calcification, but identified 1 heterozygous variant, NM_004672.4 MAP3K6 c.322G>A p.(Asp108Asn), that cosegregated with the disease in this large family. MAP3K6 has known functions in angiogenesis and affects vascular endothelial growth factor expression, which may be implicated in cerebrovascular disease. Conclusions Our data strongly suggest the MAP3K6 variant to be causative for this novel disease phenotype, but the absence of functional data and the present lack of additional families with this disease and MAP3K6 mutations still limit the formal evidence for the variant's pathogenicity.Peer reviewe