2 research outputs found

    Deletion of the Na-K-2Cl cotransporter NKCC1 results in a more severe epileptic phenotype in the intrahippocampal kainate mouse model of temporal lobe epilepsy

    Get PDF
    Increased neuronal expression of the Na-K-2Cl cotransporter NKCC1 has been implicated in the generation of seizures and epilepsy. However, conclusions from studies on the NKCC1-specific inhibitor, bumetanide, are equivocal, which is a consequence of the multiple potential cellular targets and poor brain penetration of this drug. Here, we used Nkcc1 knockout (KO) and wildtype (WT) littermate control mice to study the ictogenic and epileptogenic effects of intrahippocampal injection of kainate. Kainate (0.23 ?g in 50 nl) induced limbic status epilepticus (SE) in both KO and WT mice with similar incidence, latency to SE onset, and SE duration, but the number of intermittent generalized convulsive seizures during SE was significantly higher in Nkcc1 KO mice, indicating increased SE severity. Following SE, spontaneous recurrent seizures (SRS) were recorded by continuous (24/7) video/EEG monitoring at 0-1, 4-5, and 12-13 weeks after kainate, using depth electrodes in the ipsilateral hippocampus. Latency to onset of electrographic SRS and the incidence of electrographic SRS were similar in WT and KO mice. However, the frequency of electrographic seizures was lower whereas the frequency of electroclinical seizures was higher in Nkcc1 KO mice, indicating a facilitated progression from electrographic to electroclinical seizures during chronic epilepsy, and a more severe epileptic phenotype, in the absence of NKCC1. The present findings suggest that NKCC1 is dispensable for the induction, progression and manifestation of epilepsy, and they do not support the widely held notion that inhibition of NKCC1 in the brain is a useful strategy for preventing or modifying epilepsy.Peer reviewe

    Male offspring born to mildly ZIKV-infected mice are at risk of developing neurocognitive disorders in adulthood

    Get PDF
    Congenital Zika virus (ZIKV) syndrome may cause fetal microcephaly in -1% of affected newborns. Here, we investigate whether the majority of clinically inapparent newborns might suffer from long-term health impairments not readily visible at birth. Infection of immunocompetent pregnant mice with high-dose ZIKV caused severe offspring phenotypes, such as fetal death, as expected. By contrast, low-dose (LD) maternal ZIKV infection resulted in reduced fetal birth weight but no other obvious phenotypes. Male offspring born to LD ZIKV-infected mothers had increased testosterone (TST) levels and were less likely to survive in utero infection compared to their female littermates. Males also presented an increased number of immature neurons in apical and basal hippocampal dendrites, while female offspring had immature neurons in basal dendrites only. Moreover, male offspring with high but not very high (storm) TST levels were more likely to suffer from learning and memory impairments compared to females. Future studies are required to understand the impact of TST on neuropathological and neurocognitive impairments in later life. In summary, increased sex-specific vigilance is required in countries with high ZIKV prevalence, where impaired neurodevelopment may be camouflaged by a healthy appearance at birth.Peer reviewe
    corecore