10 research outputs found

    Stress Concentration factor Analysis of Helical Gear Drives with Asymmetric Teeth Profiles

    No full text
    This study investigates the influence of asymmetric involute teeth profiles for helical gears on the bending stress. Theoretically, bending stress has been estimated in spur involute gears which have symmetric teeth profile by based on the Lewis, 1892 equation. Later, this equation is developed by, Abdullah, 2012. to determine the effect of an asymmetric tooth profile for the spur gear on the bending stress. And then these equations are applied with stress concentration factor once for symmetric and once other for asymmetric teeth profile. In this paper, the bending stresses for various types of helical gear with various types of asymmetric teeth profile are calculated numerically for defined the stress concentration factor. The numerical solution based on the finite element method technique which that done by using the software simulation SolidWorks 2016. The results of this study indicate that the helical gear drive with asymmetric teeth profile having 'loaded side pressure angle' of ( ) and 'unloaded side pressure angle' of ( ) is better than a helical gear with standard teeth profile having pressure angle of ( ) from the regarding of tooth bending strength. Also, notes that the great enhancement in the results of maximum tooth bending stress for modified involute of tooth profile compared with the standard teeth profile. In addition to, predict the equation of stress concentration factor which is a function of both unloaded side pressure angle and helix angle and then it used with Abdullah equation for to determine the nominal stresses in the root fillet

    Impacts of prescribed burnings on litter production, nitrogen concentration, δ13C and δ15N in a suburban eucalypt natural forest of subtropical Australia

    No full text
    Prescribed burning is projected to be adopted more frequently with intensifying climate change; thus, a long-term study is necessary to understand the burning impacts on forest productivity and carbon (C) and nitrogen (N) cycling. Litter fall production rate can be used to indicate burning impacts on forest productivity, whereas N concentration, and C and N isotope composition (δ13C and δ15N) can be used to infer burning impacts on C and N cycling in plant-soil system

    Biological nitrogen fixation by two Acacia species and associated root-nodule bacteria in a suburban Australian forest subjected to prescribed burning

    No full text
    Purpose: Prescribed burning is a forest management practice which can lead to nitrogen (N)-limited conditions. This study aimed to explore whether biological N2 fixation (BNF) remained the main source of N acquisition for two understorey Acacia species in a Eucalyptus-dominated suburban forest of subtropical Australia, 3 to 6 years after prescribed burning. Root-nodule bacteria associated with these acacias were also characterised to unravel the differences in rhizobial communities between sites and species. Material and methods: Two sites, burned 3 and 6 years before sample collection, were selected within a dry subtropical forest of south-east Queensland, Australia. Leaves were collected from individuals of Acacia disparrima and A. leiocalyx at each site to determine leaf total carbon (C) and N content, C and N isotope composition (δ13C and δ15N) and the percentage of N derived from atmospheric N2. Nodules were harvested from both acacia species at each site to isolate root nodule bacteria. Bacterial isolates were processed for 16S rDNA gene sequencing. Results and discussion: Generally, no differences were found in plant physiological variables between the two acacia species. Six years after the fire, both species still depended upon BNF for their N supply, with a higher dependence in winter than in summer. Fire, although of low intensity, was likely to have created a N-limited environment which induced the reliance of legumes on BNF. Root nodule bacteria were dominated by non-rhizobial endophytes, mainly from the Firmicutes phylum. No difference in nodule bacterial diversity was found between sites. The relative abundance of rhizobial genera varied amongst plant species and sites, with a shift in dominance from Bradyrhizobium to Rhizobium species between sites 1 and 2. Conclusions: Our results show that even 6 years after burning, ecosystem remained under N stress and BNF was still the main mechanism for N acquisition by the understorey legumes.</p

    Biological nitrogen fixation by two Acacia species and associated root-nodule bacteria in a suburban Australian forest subjected to prescribed burning

    No full text
    Purpose: Prescribed burning is a forest management practice which can lead to nitrogen (N)-limited conditions. This study aimed to explore whether biological N fixation (BNF) remained the main source of N acquisition for two understorey Acacia species in a Eucalyptus-dominated suburban forest of subtropical Australia, 3 to 6 years after prescribed burning. Root-nodule bacteria associated with these acacias were also characterised to unravel the differences in rhizobial communities between sites and species. Material and methods: Two sites, burned 3 and 6 years before sample collection, were selected within a dry subtropical forest of south-east Queensland, Australia. Leaves were collected from individuals of Acacia disparrima and A. leiocalyx at each site to determine leaf total carbon (C) and N content, C and N isotope composition (δ C and δ N) and the percentage of N derived from atmospheric N . Nodules were harvested from both acacia species at each site to isolate root nodule bacteria. Bacterial isolates were processed for 16S rDNA gene sequencing. Results and discussion: Generally, no differences were found in plant physiological variables between the two acacia species. Six years after the fire, both species still depended upon BNF for their N supply, with a higher dependence in winter than in summer. Fire, although of low intensity, was likely to have created a N-limited environment which induced the reliance of legumes on BNF. Root nodule bacteria were dominated by non-rhizobial endophytes, mainly from the Firmicutes phylum. No difference in nodule bacterial diversity was found between sites. The relative abundance of rhizobial genera varied amongst plant species and sites, with a shift in dominance from Bradyrhizobium to Rhizobium species between sites 1 and 2. Conclusions: Our results show that even 6 years after burning, ecosystem remained under N stress and BNF was still the main mechanism for N acquisition by the understorey legumes. 2 2 13 1

    The potential of hyperspectral images and partial least square regression for predicting total carbon, total nitrogen and their isotope composition in forest litterfall samples

    No full text
    Hosseini Bai, S ORCiD: 0000-0001-8646-6423Purpose: The main objective of this study was to examine the potential of using hyperspectral image analysis for prediction of total carbon (TC), total nitrogen (TN) and their isotope composition (δ13C and δ15N) in forest leaf litterfall samples. Materials and methods: Hyperspectral images were captured from ground litterfall samples of a natural forest in the spectral range of 400–1700 nm. A partial least-square regression model (PLSR) was used to correlate the relative reflectance spectra with TC, TN, δ13C and δ15N in the litterfall samples. The most important wavelengths were selected using β coefficient, and the final models were developed using the most important wavelengths. The models were, then, tested using an external validation set. Results and discussion: The results showed that the data of TC and δ13C could not be fitted to the PLSR model, possibly due to small variations observed in the TC and δ13C data. The model, however, was fitted well to TN and δ15N. The cross-validation R2cv of the models for TN and δ15N were 0.74 and 0.67 with the RMSEcv of 0.53% and 1.07‰, respectively. The external validation R2ex of the prediction was 0.64 and 0.67, and the RMSEex was 0.53% and 1.19 ‰, for TN and δ15N, respectively. The ratio of performance to deviation (RPD) of the predictions was 1.48 and 1.53, respectively, for TN and δ15N, showing that the models were reliable for the prediction of TN and δ15N in new forest leaf litterfall samples. Conclusions: The PLSR model was not successful in predicting TC and δ13C in forest leaf litterfall samples using hyperspectral data. The predictions of TN and δ15N values in the external litterfall samples were reliable, and PLSR can be used for future prediction. © 2017, Springer-Verlag GmbH Germany
    corecore