423 research outputs found

    High-pressure study on the superconducting pyrochlore oxide Cd2Re2O7

    Full text link
    Superconducting and structural phase transitions in a pyrochlore oxide Cd2Re2O7 are studied under high pressure by x-ray diffraction and electrical resistivity measurements. A rich P-T phase diagram is obtained, which contains at least two phases with the ideal and slightly distorted pyrochlore structures. It is found that the transition between them is suppressed with increasing pressure and finally disappears at a critical pressure Pc = 3.5 GPa. Remarkable enhancements in the residual resistivity as well as the coefficient A of the AT 2 term in the resistivity are found around the critical pressure. Superconductivity is detected only for the phase with the structural distortion. It is suggested that the charge fluctuations of Re ions play a crucial role in determining the electronic properties of Cd2Re2O7.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp

    Field-Induced Uniform Antiferromagnetic Order Associated with Superconductivity in Pr1x_{1-x}LaCex_{x}CuO4δ_{4-\delta}

    Full text link
    Strong correlation between field-induced antiferromagnetic (AF) order and superconductivity is demonstrated for an electron-doped cuprate superconductor, Pr1x_{1-x}LaCex_{x}CuO4δ_{4-\delta} (PLCCO). In addition to the specimen with x=0.11x=0.11 (which is close to the AF phase boundary, x0.10x\simeq0.10), we show that the one with x=0.15x=0.15 (Tc16T_c\simeq16 K at zero field) also exhibits the field-induced AF order with a reduced magnitude of the induced moment. The uniform muon Knight shift at a low magnetic field (102\sim10^2 Oe) indicates that the AF order is not localized within the cores of flux lines, which is in a marked contrast with theoretical prediction for hole-doped cuprates. The presence of anomalous non-diagonal hyperfine coupling between muons and Pr ions is also demonstrated in detail.Comment: 8 pages, 5 figures, to be published in J. Phys. Soc. Jp

    Prominent quasi-particle peak in the photoemission spectrum of the metallic phase of V_2O_3

    Full text link
    We present the first observation of a prominent quasi-particle peak in the photoemission spectrum of the metallic phase of V_2O_3 and report new spectral calculations that combine the local density approximation with the dynamical mean-field theory (using quantum Monte Carlo simulations) to show the development of such a distinct peak with decreasing temperature. The experimental peak width and weight are significantly larger than in the theory.Comment: 4 pages, 3 figures, supercedes cond-mat/010804

    Electronic structure of the muonium center as a shallow donor in ZnO

    Full text link
    The electronic structure and the location of muonium centers (Mu) in single-crystalline ZnO were determined for the first time. Two species of Mu centers with extremely small hyperfine parameters have been observed below 40 K. Both Mu centers have an axial-symmetric hyperfine structure along with a [0001] axis, indicating that they are located at the AB_{O,//} and BC_{//} sites. It is inferred from their small ionization energy (~6 meV and 50 meV) and hyperfine parameters (~10^{-4} times the vacuum value) that these centers behave as shallow donors, strongly suggesting that hydrogen is one of the primary origins of n type conductivity in as-grown ZnO.Comment: 4 pages, 4 figures, submitted to PR

    Incommensurate spin correlations induced by magnetic Fe ions substituted into overdoped Bi1.75Pb0.35Sr1.90CuO6+z

    Get PDF
    Spin correlations in the overdoped region of Bi1.75Pb0.35Sr1.90CuO6+z have been explored with Fe-doped single crystals characterized by neutron scattering, muon-spin-rotation (muSR) spectroscopy, and magnetic susceptibility measurements. Static incommensurate spin correlations induced by the Fe spins are revealed by elastic neutron scattering. The resultant incommensurability delta is unexpectedly large (~0.2 r.l.u.), as compared with delta ~ 1/8 in overdoped superconductor La2-xSrxCuO4. Intriguingly, the large delta in this overdoped region is close to the hole concentration p. This result is reminiscent of the delta ~ p trend observed in underdoped La2-xSrxCuO4; however, it is inconsistent with the saturation of delta in the latter compound in the overdoped regime. While our findings in Fe-doped Bi1.75Pb0.35Sr1.90CuO6+z support the commonality of incommensurate spin correlations in high-Tc cuprate superconductors, they also suggest that the magnetic response might be dominated by a distinct mechanism in the overdoped region.Comment: 4 pages, 5 figures. Revision in introduction, discussion, and conclusion

    Direct experimental verification of applicability of single-site model for angle integrated photoemission of small TKT_{K} concentrated Ce compounds

    Full text link
    Bulk-sensitive high-resolution Ce 4f spectra have been obtained from 3d \to 4f resonance photoemission measurements on La1x_{1-x}Cex_xAl2_2 and La1x_{1-x}Cex_xRu2_2 for x=0.0,0.04,1.0x = 0.0, 0.04, 1.0. The 4f spectra of low-Kondo-temperature (TKT_{K}) (La,Ce)Al2_2 are essentially identical except for a slight increase of the Kondo peak with xx, which is consistent with a known increase of TKT_{K} with xx. In contrast, the 4f spectra of high-TKT_{K} (La,Ce)Ru2_2 show a Kondo-like peak and also a 0.5 eV structure which increases strongly with xx. The resonance photon-energy dependences of the two contributions are different and the origin of the 0.5 eV structure is still uncertain.Comment: submitted to SCES 2001, two-columnn format, modified tex

    Photo-excited charge carrier lifetime enhanced by slow cation molecular dynamics in lead iodide perovskite FAPbI3_3

    Full text link
    Using muon spin relaxation (μ\muSR) measurements on formamidinium lead iodide [FAPbI3_3, where FA denotes HC(NH2)2_2)_2] we show that, among the five structurally distinct phases of FAPbI3_3 exhibited through two different temperature hysteresis, the reorientation motion of FA molecules is quasi-static below 50\approx50 K over the time scale of 106^{-6} s in the low-temperature (LT) hexagonal (Hex-LT, <160<160 K) phase which has relatively longer photo-excited charge carrier lifetime (τc\tau_{\rm c}\sim106^{-6} s). In contrast, a sharp increase in the FA molecular motion was found above 50\approx50 K in the Hex-LT phase, LT-tetragonal phase (Tet-LT, <140<140 K), the high-temperature (HT) hexagonal phase (Hex-HT, 160-380 K), and the HT-tetragonal phase (Tet-HT, 140-280 K) where τc\tau_{\rm c} decreases with increasing temperature. More interestingly, the reorientation motion is further promoted in the cubic phase at higher temperatures (>380/280>380/280 K), while τc\tau_{\rm c} is recovered to comparable or larger than that of the LT phases. These results indicate that there are two factors that determine τc\tau_{\rm c}, one related to the local reorientation of cationic molecules that is not unencumbered by phonons, and the other to the high symmetry of the bulk crystal structure.Comment: 7 pages, 4 figure

    Nonlocal Effects and Shrinkage of the Vortex Core Radius in YNi2B2C Probed by muSR

    Full text link
    The magnetic field distribution in the vortex state of YNi2B2C has been probed by muon spin rotation (muSR). The analysis based on the London model with nonlocal corrections shows that the vortex lattice has changed from hexagonal to square with increasing magnetic field H. At low fields the vortex core radius, rho_v(H), decreases with increasing H much steeper than what is expected from the sqrt(H) behavior of the Sommerfeld constant gamma(H), strongly suggesting that the anomaly in gamma(H) primarily arises from the quasiparticle excitations outside the vortex cores.Comment: 4 pages, 4 figures, submitted to Phys. Rev.
    corecore