7 research outputs found

    Identification of in vivo Essential Genes of Vibrio vulnificus for Establishment of Wound Infection by Signature-Tagged Mutagenesis

    Get PDF
    Vibrio vulnificus can cause severe necrotic lesions within a short time. Recently, it has been reported that the numbers of wound infection cases in healthy hosts are increasing, for which surgical procedures are essential in many instances to eliminate the pathogen owing to its rapid proliferation. However, the mechanisms by which V. vulnificus can achieve wound infection in healthy hosts have not been elucidated. Here, we advance a systematic understanding of V. vulnificus wound infection through genome-wide identification of the relevant genes. Signature-tagged mutagenesis (STM) has been developed to identify functions required for the establishment of infection including colonization, rapid proliferation, and pathogenicity. Previously, STM had been regarded to be unsuitable for negative selection to detect the virulence genes of V. vulnificus owing to the low colonization and proliferation ability of this pathogen in the intestinal tract and systemic circulation. Alternatively, we successfully identified the virulence genes by applying STM to a murine model of wound infection. We examined a total of 5418 independent transposon insertion mutants by signature-tagged transposon mutagenesis and detected 71 clones as attenuated mutants consequent to disruption of genes by the insertion of a transposon. This is the first report demonstrating that the pathogenicity of V. vulnificus during wound infection is highly dependent on its characteristics: flagellar-based motility, siderophore-mediated iron acquisition system, capsular polysaccharide, lipopolysaccharide, and rapid chromosome partitioning. In particular, these functions during the wound infection process and are indispensable for proliferation in healthy hosts. Our results may thus allow the potential development of new strategies and reagents to control the proliferation of V. vulnificus and prevent human infections

    Cell wall damage reveals spatial flexibility in peptidoglycan synthesis and a non-redundant role for RodA in mycobacteria [preprint]

    Get PDF
    Cell wall peptidoglycan is a heteropolymeric mesh that protects the bacteria from internal turgor and external insults. In many rod-shaped bacteria, peptidoglycan synthesis for normal growth is achieved by two distinct pathways: the Rod complex, comprised of MreB, RodA and a cognate class B PBP, and the class A PBPs. In contrast to laterally-growing bacteria, pole-growing mycobacteria do not encode an MreB homolog and do not require SEDS protein RodA for in vitro growth. However, RodA contributes to survival of Mycobacterium tuberculosis in some infection models, suggesting that the protein could have a stress-dependent role in maintaining cell wall integrity. Under basal conditions, we find here that the subcellular distribution of RodA largely overlaps with that of the aPBP PonA1, and that both RodA and the aPBPs promote polar peptidoglycan assembly. Upon cell wall damage, RodA fortifies M. smegmatis against lysis and, unlike aPBPs, contributes to a shift in peptidoglycan assembly from the poles to the sidewall. Neither RodA nor PonA1 relocalize; instead, the redistribution of nascent cell wall parallels that of peptidoglycan precursor synthase MurG. Our results support a model in which mycobacteria balance polar growth and cell-wide repair via spatial flexibility in precursor synthesis and extracellular insertion. Importance Peptidoglycan synthesis is a highly successful target for antibiotics. The pathway has been extensively studied in model organisms under laboratory-optimized conditions. In natural environments, bacteria are frequently under attack. Moreover the vast majority of bacterial species are unlikely to fit a single paradigm because of differences in growth mode and/or envelope structure. Studying cell wall synthesis under non-optimal conditions and in non-standard species may improve our understanding of pathway function and suggest new inhibition strategies. Mycobacterium smegmatis, a relative of several notorious human and animal pathogens, has an unusual polar growth mode and multi-layered envelope. In this work we challenged M. smegmatis with cell wall-damaging enzymes to characterize the roles of cell wall-building enzymes when the bacterium is under attack

    MukB Is a Gene Necessary for Rapid Proliferation of Vibrio vulnificus in the Systemic Circulation but Not at the Local Infection Site in the Mouse Wound Infection Model

    No full text
    Vibrio vulnificus causes rapid septicemia in susceptible individuals who have ingested contaminated foods or have open wounds exposed to seawater contaminated with the bacteria. Despite antibiotic therapy and aggressive debridement, mortality from septicemia is high. In this study, we showed that MukB mutation (mukB::Tn) affected the proliferation of V. vulnificus in the systemic circulation but not at the inoculation site in the wound infection model. A comparison of mukB::Tn with WT and a mukB complement strain (mukB::Tn/pmukB) on the bacterial burden in the muscle at the infection site showed that spreading and proliferation of the mukB::Tn strain was similar to those of the other strains. However, the bacterial burden of mukB::Tn in the spleen was reduced compared to that of the WT strain in the wound infection model. In a competition experiment, we found a lower bacterial burden of mukB::Tn in the spleen than that of the WT strain infecting the systemic circulation. Here, we report on a gene required for the rapid proliferation of V. vulnificus only in the systemic circulation and potentially required for its survival. Our finding may provide a novel therapeutic target for V. vulnificus septicemia
    corecore