UMass Chan Medical School eScholarship@UMassChan

University of Massachusetts Medical School Faculty Publications

2021-10-26

Cell wall damage reveals spatial flexibility in peptidoglycan synthesis and a non-redundant role for RodA in mycobacteria [preprint]

Emily S. Melzer University of Massachusetts Amherst

Et al.

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/faculty_pubs

Part of the Bacteria Commons, and the Microbiology Commons

Repository Citation

Melzer ES, Kado T, García-Heredia A, Ramnaresh Gupta K, Meniche X, Morita YS, Sassetti CM, Rego EH, Siegrist MS. (2021). Cell wall damage reveals spatial flexibility in peptidoglycan synthesis and a non-redundant role for RodA in mycobacteria [preprint]. University of Massachusetts Medical School Faculty Publications. https://doi.org/10.1101/2021.10.26.465981. Retrieved from https://escholarship.umassmed.edu/faculty_pubs/2099

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in University of Massachusetts Medical School Faculty Publications by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.

1 Cell wall damage reveals spatial flexibility in peptidoglycan synthesis and a non-

2 redundant role for RodA in mycobacteria

3 Running title: Spatial flexibility in mycobacterial cell wall synthesis

4

- 5 Emily S. Melzer¹, Takehiro Kado¹, Alam García-Heredia^{2,3}, Kuldeepkumar Ramnaresh Gupta⁴,
- 6 Xavier Meniche⁵, Yasu S. Morita^{1,2}, Christopher M. Sassetti⁵, E. Hesper Rego⁴, M. Sloan
- 7 Siegrist^{1,2,#}
- 8

9 Affiliations:

- ¹Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
- ¹¹ ²Molecular and Cellular Biology Graduate Program, University of Massachusetts
- 12 Amherst, MA 01003
- ¹³ ³Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- ⁴Department of Microbial Pathogenesis, Yale University School of Medicine, New
- 15 Haven, CT 06519
- ¹⁶ ⁵Department of Microbiology and Physiological Systems, University of Massachusetts
- 17 Medical School, Worcester, MA 01655
- 18
- 19 Correspondence: M.S. Siegrist (siegrist@umass.edu)
- 20
- 21 Research was supported by funds from the National Institutes of Health (NIH) under
- awards funding R21 Al144748, R01 Al148255, and DP2 Al138238. ESM was supported
- by NIH T32 GM008515 administered to the Chemistry Biology Interface Program at the

University of Massachusetts Amherst. We are grateful to Ms. Emily Bechtold for
 technical assistance.

26

27 Importance

28 Peptidoglycan synthesis is a highly successful target for antibiotics. The pathway has 29 been extensively studied in model organisms under laboratory-optimized conditions. In 30 natural environments, bacteria are frequently under attack. Moreover the vast majority 31 of bacterial species are unlikely to fit a single paradigm because of differences in growth 32 mode and/or envelope structure. Studying cell wall synthesis under non-optimal 33 conditions and in non-standard species may improve our understanding of pathway 34 function and suggest new inhibition strategies. Mycobacterium smeamatis, a relative of 35 several notorious human and animal pathogens, has an unusual polar growth mode and 36 multi-layered envelope. In this work we challenged M. smegmatis with cell wall-37 damaging enzymes to characterize the roles of cell wall-building enzymes when the bacterium is under attack. 38

39 Abstract

40

Cell wall peptidoglycan is a heteropolymeric mesh that protects the bacteria from
internal turgor and external insults. In many rod-shaped bacteria, peptidoglycan
synthesis for normal growth is achieved by two distinct pathways: the Rod complex,
comprised of MreB, RodA and a cognate class B PBP, and the class A PBPs. In

45 contrast to laterally-growing bacteria, pole-growing mycobacteria do not encode an 46 MreB homolog and do not require SEDS protein RodA for *in vitro* growth. However, 47 RodA contributes to survival of *Mycobacterium tuberculosis* in some infection models. 48 suggesting that the protein could have a stress-dependent role in maintaining cell wall 49 integrity. Under basal conditions, we find here that the subcellular distribution of RodA 50 largely overlaps with that of the aPBP PonA1, and that both RodA and the aPBPs 51 promote polar peptidoglycan assembly. Upon cell wall damage, RodA fortifies M. 52 smegmatis against lysis and, unlike aPBPs, contributes to a shift in peptidoglycan 53 assembly from the poles to the sidewall. Neither RodA nor PonA1 relocalize; instead, 54 the redistribution of nascent cell wall parallels that of peptidoglycan precursor synthase 55 MurG. Our results support a model in which mycobacteria balance polar growth and 56 cell-wide repair via spatial flexibility in precursor synthesis and extracellular insertion.

57

58 Introduction

59 Bacterial cell wall peptidoglycan is required for viability in most species under most 60 conditions (1). Although peptidoglycan synthesis has been extensively studied, much of 61 this work has been done under idealized growth conditions that do not reflect the variety 62 of stressors found in the natural environment. Outside of the laboratory, the bacterial 63 cell wall is under constant attack. In virtually all environments, competitors, predators, 64 and unwilling hosts challenge bacteria with peptidoglycan-hydrolyzing enzymes (1-5). 65 However, mechanisms to counteract cell wall damage are poorly defined. Studying 66 peptidoglycan synthesis and remodeling under non-optimal stress conditions may lead

to a better understanding of pathogenesis and ecologically-relevant pathways andinteractions.

69

70 In laterally-growing, rod-shaped organisms like *Escherichia coli* and *Bacillus subtilis*, the 71 combined activity of two distinct peptidoglycan polymerization pathways ensures cell 72 wall integrity during normal growth as well as hostile conditions. The final, lipid-linked 73 peptidoglycan precursor lipid II is synthesized in the inner leaflet of the plasma 74 membrane by MurG, then flipped to the outer leaflet by MurJ (6) and inserted into the 75 existing cell wall by the action of transglycosylases and transpeptidases. In one 76 pathway, two dedicated enzymes work as a cognate pair, SEDS-family transglycosylase 77 RodA (7, 8), and a monofunctional, class B penicillin-binding protein (bPBP) 78 transpeptidase (9, 10). Along with cytoskeletal protein MreB, these proteins make up 79 the Rod complex. This essential pathway contributes to elongation and rod-shape 80 homeostasis by directed motion around the cell (10-13). A second, non-essential, 81 pathway utilizes bifunctional, class A PBP (aPBPs) that perform both transglycosylation 82 and transpeptidation (9, 14, 15), move diffusively, and are thought to maintain and 83 repair the cell wall (16-21). Despite a growing body of evidence suggesting that aPBPs 84 are important for stress response while the Rod complex contributes to normal growth, 85 there are also reports that Rod complex components can sense and respond to stress 86 (22-24).

87

While RodA and its cognate bPBP are more conserved than the aPBPs (25-27), they
are not found in all bacterial species (28). Even when they are encoded in the genome,

90 RodA and its bPBP are not always essential for viability nor are they always associated 91 with MreB. For example, mycobacteria and related organisms lack MreB and do not rely 92 on RodA for *in vitro* growth (29-33). Individual aPBPs are also largely dispensable for *in* 93 vitro growth in this genus, with Mycobacterium smegmatis PonA1 a notable exception 94 (9, 14, 15, 34). Why have these organisms retained enzymatically-redundant systems 95 for peptidoglycan synthesis? One clue may arise from work with the human pathogen 96 *M. tuberculosis*, where RodA and the aPBPs individually contribute to survival in 97 immune cells, some mouse backgrounds, and in a guinea pig model (29, 35-39). These 98 observations suggest that RodA and the aPBPs play unique roles in protecting 99 mycobacteria from stress. 100

101 Another way that the mycobacterial cell wall differs from those of model organisms is its 102 polar mode of elongation. Cell wall damage from external sources poses a spatial 103 challenge to pole-growing bacteria, as it presumably is not confined to the normal sites 104 of active peptidoglycan metabolism. We previously found that treatment with 105 peptidoglycan-digesting enzymes lysozyme and mutanolysin causes nascent cell wall in 106 *M. smegmatis* to shift from the poles to the sidewall (40). Here we show that *M.* 107 smegmatis RodA and PonA1 largely overlap in localization and activity. Upon cell wall 108 damage, peptidoglycan synthesis is redistributed from the pole to the sidewall. Neither 109 RodA nor PonA1 relocalize in a manner that corresponds to this shift; instead, the 110 redistribution of nascent cell wall correlates with that of peptidoglycan precursor 111 synthase MurG. Although not essential for growth under normal laboratory conditions, 112 RodA has a non-redundant role in damage-induced relocalization of cell wall synthesis

and protects *M. smegmatis* from lysis under this condition. Our data support a model in
 which the location of precursor synthesis and use of specific transglycosylases can be

115 tuned for growth or repair.

116

117 **Results**

118 Substantial overlap in PonA1 and RodA localization under basal conditions. In

119 other organisms, aPBPs are hypothesized to contribute to cell wall integrity and the Rod

120 complex, to cell wall elongation (9, 10, 16, 17, 22, 41, 42). If this division of labor is true

121 in pole-growing mycobacteria, we hypothesized that RodA may be more polar than

122 aPBPs like PonA1. To test this hypothesis we sought to compare the subcellular

123 localization of fluorescent protein fusions to PonA1 and RodA. We previously confirmed

124 the functionality of an mRFP fusion to PonA1, an essential protein in *M. smegmatis*, by

allele swapping (43). Here we used the reduced cell length phenotype associated with

126 rodA deletion (29) to test and confirm functionality of our RodA-mRFP construct (Fig.

127 S1). We also showed that the fusion protein is membrane-bound, as expected, and

128 primarily detected as full-length (Fig. S2).

Under basal conditions, we found that RodA-mRFP and, as we and others previously reported, PonA1-mRFP, are distributed along the perimeter of the mycobacterial cell (43, 44) (Figs. 1a, 1b). Neither enzyme showed clear polar enrichment but RodA-mRFP localization extended further towards the poles than PonA1-mRFP (Figs. 1b, 1c). mRFP fusions to extracellular synthetic enzymes for other layers of the mycobacterial cell envelope, including the arabinogalactan phosphotransferase Lcp1 (45), and two mycolyltransferases, *MSMEG 3580* and *MSMEG 6396* (46), showed very different

136 patterns of localization from the peptidoglycan synthetic enzymes, indicating that the

137 subcellular localization patterns of RodA-mRFP and PonA1-mRFP are specific (Figs.

138 1a, 1b). These data suggest that the cell-wide distributions of the proteins largely

139 overlap, with RodA-mRFP slightly more polar than PonA1-mRFP.

140

141 aPBPs and RodA both promote polar cell wall synthesis. Using a variety of metabolic 142 labeling probes, we and others have found that active cell wall metabolism in 143 mycobacteria occurs in asymmetric polar gradients (40, 44, 47-52). To test whether the 144 modest difference in PonA1-mRFP and RodA-mRFP localization (Fig. 1) reflected their 145 sites of activity, we labeled nascent cell wall using the dipeptide probe alkyne-D-alanine-146 D-alanine (53, 54). We previously showed that this probe incorporates into lipid-linked 147 peptidoglycan precursors in *M. smegmatis* and therefore is a readout for cell wall 148 biosynthesis in this species (40). To visualize aPBP activity we labeled a rodA knockout 149 mutant. To enrich for RodA activity, we reduced aPBP activity by moenomycin, which 150 specifically inhibits transglycosylation by aPBPs but not by RodA (8, 55-58).

151

The overall amount of cell wall labeling from $\Delta rodA$ or moenomycin-treated wildtype cells was reduced compared to untreated wildtype (Figs. 2a,b,d). In the absence of RodA, labeling was reduced along the sidewall and, to an even greater extent, at the poles, such that there was a net decrease in the polarity of cell wall synthesis (Fig. 2c). We observed a similar phenotype when alkyne-D-alanine-D-alanine was detected by click chemistry ligation to a different fluorophore (Fig. S3). Inhibition of transglycosylation by aPBPs also resulted in a labeling decrease along the sidewall

and, to a greater extent, at the poles (Fig. 2e). These data suggest that, under basal
conditions, RodA and aPBPs both contribute to polar cell wall synthesis.

161

162 Mutanolysin/lysozyme-mediated cell wall damage occurs along the cell periphery. 163 We previously showed that when *M. smegmatis* cells are treated with a combination of 164 lysozyme and mutanolysin, nascent peptidoglycan redistributes from the poles to the 165 sidewall (40). These enzymes are glycoside hydrolases and break the linkages that 166 connect neighbouring glycans N-acetylglucosamine and N-acetylmuramic acid in the 167 peptidoglycan backbone (Fig. S4) (3-5). We hypothesized that cell wall assembly can 168 shift to places where the cell wall is damaged, presumably for repair. Implicit in this 169 hypothesis is the assumption that enzymes added to the bacterial growth medium 170 attack the cell wall indiscriminately, *i.e.* without preference for poles vs. sidewall. In 171 support, a previous scanning electron microscopy study showed that lysozyme-172 associated surface irregularities occur along the entire *M. smegmatis* cell periphery 173 (59). We also observed that wildtype *M. smegmatis* treated with lysozyme and 174 mutanolysin often has bumps around the cell, which we interpret as areas of weakened 175 peptidoglycan (Fig. S4), and that loss of fluorescently-labeled cell wall occurs along the 176 sidewall (Fig. S4).

177

MurG relocalizes to the sidewall in response to cell wall damage but PonA1, RodA and DivIVA do not. We next considered what element(s) of cell wall assembly machinery might be responsible for redistributing peptidoglycan synthesis from sites of polar growth to sites of sidewall damage. After treatment with mutanolysin/lysozyme, we

182	initially found that the localization of RodA-mRFP, and to a lesser extent, PonA1-mRFP,
183	became more polar (Fig. S5). This was unexpected since nascent cell wall localization
184	shifted in the opposite direction, <i>i.e.</i> became less polar (40) (Fig. 4a). However when we
185	stained enzyme-treated cells with SYTOX Green, a dye that preferentially labels dead
186	bacteria, we did not observe any viable cells with relocalized RodA-mRFP (Fig. S6).
187	While we do not yet understand this phenotype, quantification of RodA-mRFP
188	fluorescence from SYTOX Green-excluded cells suggests that cell wall damage likely
189	does not change the localization of extracellular synthesis proteins (Fig. S6).
190	
191	In contrast to well-studied, rod-shaped species, mycobacteria coordinate cell wall
192	synthesis via the cytoskeletal protein DivIVA (Wag31), rather than MreB (50, 60-62). We
193	wondered whether DivIVA might also organize cell wall synthesis in response to
194	sidewall damage. However the location of the functional fluorescent protein fusion
195	DivIVA-eGFP (40, 50, 62), like those of PonA1 and RodA, did not change upon
196	mutanolysin/lysozyme treatment (Fig. 3a).
197	
198	We next turned our attention to the source of peptidoglycan precursor substrates for the
199	aPBPs and RodA. Synthesis of the final precursor lipid II is carried out by MurG.
200	Accordingly we treated cells expressing the functional fluorescent protein fusion MurG-
201	Dendra2 (43) with mutanolysin/lysozyme. Imaging of cells before and after treatment
202	revealed that MurG-Dendra2 signal transitions from a predominantly sub-polar and
203	patchy signal to a more uniform signal that often surrounds the entire periphery of the
204	cell (Fig. 3b). Because relocalization of RodA-mRFP was only observed in dead cells,

205 we stained both untreated and treated cells with propidium iodide, another dye that 206 preferentially labels dead bacteria. After omitting propidium iodide-stained cells from our 207 analysis, fluorescence quantitation supported our observation that MurG-Dendra2 208 relocalizes away from the polar region upon cell wall damage (Figs. 3c-e) and that it 209 becomes less patchy (Fig. 3f). 210 211 Taken together, our data indicate that MurG, but not PonA1, RodA or DivIVA. 212 relocalizes upon cell wall damage. 213 214 RodA, but not aPBPs contributes to redistribution of peptidoglycan synthesis 215 upon cell wall damage. The distribution of MurG, and therefore lipid II, likely 216 contributes to spatial flexibility in peptidoglycan assembly. The location of RodA (and 217 likely, PonA1) did not obviously change upon cell wall damage (Fig. S5, S6). However, 218 given the basal, cell-wide distribution of both transglycosylases, we asked if they might 219 contribute to damage-induced pole-to-sidewall redistribution of nascent peptidoglycan. 220 We first reproduced the cell wall labeling phenotype in mutanolysin/lysozyme-treated 221 wildtype *M. smegmatis* (40) and showed that there was a decrease in nascent 222 peptidoglycan polarity (Fig. 4a). By contrast, we found that mutanolysin/lysozyme 223 treatment of *M. smegmatis* lacking RodA did not change the polarity of nascent 224 peptidoglycan (Fig. 4b, Fig. S3). However, pretreating wildtype cells with the aPBP-225 transglycosylation inhibitor moenomycin did not prevent pole-to-sidewall damage 226 response (Fig. 4c). These data suggest that RodA, but not aPBPs, contributes to stress-227 induced spatial flexibility in peptidoglycan synthesis.

228

229	A non-redundant role for RodA in protection against cell wall damage. The
230	contribution of RodA _{Mtb} to <i>M. tuberculosis</i> survival in different <i>in vivo</i> models (29, 35-37,
231	39) and the requirement for RodA _{Msm} in the damage-induced sidewall shift in M .
232	smegmatis peptidoglycan synthesis (Fig. 4) suggested that the enzyme could play a
233	non-redundant role in protecting against cell wall stress. To test, we challenged wild-
234	type and $\Delta rodA M$. smegmatis cultures in the presence or absence of moenomycin with
235	mutanolysin/lysozyme and plated spot dilutions (Fig. S7). For reasons that we do not
236	yet understand, moenomycin treatment appeared to reduce the sensitivity of <i>M</i> .
237	smegmatis to cell wall damage. Because the spot dilutions did not have the resolution to
238	test whether there was a difference between wildtype and $\Delta rodA$, we performed full-
239	plate colony-forming unit (CFU) assays and microscopy at several time points. Upon
240	addition of mutanolysin/lysozyme to the growth medium, wildtype M. smegmatis grew
241	for 2 hours prior to lysing (Fig. 5a) albeit more slowly than untreated cells (Fig. 5b). By
242	contrast <i>∆rodA</i> immediately began to lyse, a phenotype evident both by CFUs and by
243	microscopy (Fig. 5a, Fig. S4). <i>\(\DeltarodA\)</i> lysis was complemented by expression of <i>rodA</i> -
244	mRFP (Fig. 5b). Expression of <i>rodA</i> -mRFP in a wildtype background, moreover,
245	enhanced survival compared to wildtype alone (Fig. 5b). Thus while RodA is
246	dispensable for normal growth (29) (Fig. S8), it plays a non-redundant role in protection
247	from cell wall damage.
248	

249

250

251 Discussion

252

We have previously shown that upon cell wall insult, peptidoglycan assembly in *M. smegmatis* relocalizes from the growing poles to the non-growing sidewall (40). Given that bacteria are likely to encounter such insults frequently in their natural habitats, we sought to better understand the factors that drive relocalization. We focused on the roles of two peptidoglycan transglycosylases, the aPBP PonA1 and SEDS family transglycosylase RodA.

259

260 In laterally-growing, rod-shaped bacteria, the emerging narrative is that RodA lays the 261 template for elongation and aPBPs fill in the gaps for maintenance and repair (10, 16-262 19, 21). Unlike the organisms in which this model has been tested, pole-growing 263 bacteria like members of the Mycobacteriales and Hyphomicrobiales lack the 264 cytoskeletal protein MreB and either lack or do not require RodA for viability or shape 265 (28, 29). If the division of labor that has been reported in laterally-growing bacilli were 266 employed by mycobacteria, we would predict that localization and activity of RodA 267 would be enriched at the poles, while localization and activity of aPBPs like PonA1 268 would be distributed around the cell periphery. This is reminiscent of the model for 269 transpeptidation in mycobacterial peptidoglycan, where the D,D-transpeptidases that 270 catalyze 4,3-crosslinks associated with lipid II insertion are likely to be enriched at the 271 poles and the L,D-transpeptidases that catalyze 3,3-crosslinks associated with cell wall 272 maturation localize along the cell periphery (40, 44, 63, 64). Instead we observed that 273 the distributions of functional fluorescent protein fusions to RodA and PonA1 are similar,

as are their enzymatic activities (Figs. 1-2). As recent findings in pole-growing
 Corynebacterium glutamicum (31) also suggest, the division of labor for *M. smegmatis* peptidoglycan polymerases under basal conditions is subtle.

277 While RodA and aPBPs make similar contributions to polar growth, our data suggest

that their roles diverge upon cell wall damage (Fig. 5). Specifically, RodA plays a non-

279 redundant role in damage-associated pole-to-sidewall redistribution of peptidoglycan

synthesis, which is concomitant with a similar redistribution of the lipid II synthase MurG

281 (Fig. 3). It is not yet clear if the change in substrate availability is the cause,

consequence or simply occurs in parallel with the change in transglycosylase usage. In

the future, localization of lipid II flippase MurJ—which bridges lipid II synthesis in the

inner leaflet and lipid II insertion in the outer leaflet—may help us to distinguish between

these models. In *Staphylococcus aureus*, MurJ recruitment redirects peptidoglycan

synthesis from the cell periphery, for expansion, to midcell, for division (65).

287 Our data suggest that RodA promotes a pole-to-sidewall shift in peptidoglycan synthesis

(Fig. 4) and survival during cell wall damage (Fig. 5). The non-redundant role(s) for

289 RodA in resistance to lysis (Fig. 5) is consistent with at least two models. In the first,

290 RodA provides on-demand repair of cell wall damage. A similar stress-specific,

291 peptidoglycan-building role for RodA has been suggested in *Listeria monocytogenes*

292 (24), where absence of a RodA homolog also sensitizes bacteria to cell wall damage

293 (66). Loss of damage-induced sidewall shift supports this type of active role for RodA in

294 mycobacteria. However if true, this would be in contrast to the repair function of aPBPs,

rather than RodA, in other organisms (16-19, 21). Thus a second model to explain the

296 l	vsis	phenotyp	e of	∆rodA	is that	t RodA	builds a	ı cell wall	with a	an architecture	that is
	,										

- inherently more resistant to damage or that is more amenable to repair.
- 298
- 299 The utility of two pathways for the same enzymatic reaction is not clear under
- 300 laboratory-optimized growth conditions. By studying the requirements for peptidoglycan
- 301 synthesis during cell wall damage, we have uncovered spatial flexibility in precursor
- 302 synthesis and extracellular insertion, and a non-redundant role for RodA in protection
- 303 (Fig. 6). These factors may enable mycobacteria to balance polar growth with cell-wide
- 304 repair in the host and soil environments.

305 Materials and Methods

306 **Strain construction**. Genes of interest were amplified from *M. smegmatis*

307 mc²155 genomic DNA. *mRFP* was amplified from a pL5pTetO plasmid, with primers in

- 308 Table S1. Backbone plasmid pL5pTetO was linearized by PCR. 15 ng of plasmid
- 309 backbone, 20 ng of gene of interest, and 20 ng of *mRFP* PCR products were incubated
- with Gibson master mix (New England Biolabs, #E2611S) at 50°C for 1 hour. 5 μL of
- 311 Gibson product was transformed into 50 µL XL1-Blue *E. coli* competent cells by heat
- 312 shock. Transformants on 50 μg/mL kanamycin plates were confirmed by colony PCR
- and sequencing, and then electroporated into *M. smegmatis* mc²155 or into $\Delta rodA$.

314

315 **Cell wall damage.** Wildtype or $\Delta rodA$ cells were grown to stationary phase, then back-316 diluted and allowed overnight growth to log phase (OD₆₀₀ = 0.5-0.8). Lysozyme (Sigma-317 Aldrich, #L6876) was freshly resuspended in PBS, filter-sterilized, and added to cultures

at a final concentration of 500 µg/mL. Mutanolysin (Sigma-Aldrich #M9901) was added
simultaneously at a final concentration of 500 U/mL. Cultures were incubated at 37°C
shaking at 300 rpm for 1 hour.

Peptidoglycan labeling. Peptidoglycan precursor probe alkyne-D-alanine-D-alanine (2
mM; custom synthesized by WuXi AppTech), was added to cultures for the final
10 minutes of incubation. Cells were washed three times in cold PBS and fixed in 2%
formaldehyde for 10 minutes. Cells were washed in PBS then subjected to CuAAC with
picolyl azide-AF488 or picolyl azide-TAMRA (Click Chemistry Tools) as described (67,
68).

327

328 **CFUs and growth curves**. Wildtype + pL5pTetO, wildtype + pL5pTetO-*rodA-mRFP*,

 $329 \quad \Delta rodA + pL5pTetO$, and $\Delta rodA + pL5pTetO$ -rodA-mRFP cells were grown to stationary

330 phase, then back-diluted and allowed to grow overnight to log phase ($OD_{600} = 0.5-0.8$).

331 Cultures were back-diluted once more to $OD_{600} = 0.05$. Lysozyme and mutanolysin were

added as above. Triplicate cultures were incubated at 37°C shaking at 150 rpm for 5

333 hours. Aliquots were periodically plated for CFUs.

334

Moenomycin treatment. Wildtype cells were grown to stationary phase, then backdiluted and allowed to grow overnight to log phase ($OD_{600} = 0.5-0.8$). Moenomycin (Cayman Chemicals, #15506) was added at concentrations described in text. Cultures were incubated at 37°C shaking at 400 rpm for 30 minutes in Benchmark Scientific MultiTherm Shaker H5000-H.

341	Viability staining. Staining was calibrated using untreated cells as live control and 70%
342	isopropanol-treated cells as dead control. Following 90 minute treatment with lysozyme
343	and mutanolysin, cells expressing RodA-mRFP were washed with HEPES-buffered
344	saline (HBS) twice, and resuspended in HBS + Sytox Green (Fisher Scientific, #S7020)
345	at a final concentration of 2.5 μ M. For cells expressing MurG-Dendra2, propidium iodide
346	was added to a final concentration of 4 $\mu M.$ Cells were then incubated in the dark for an
347	additional 30 minutes and imaged immediately.
348	
349	Imaging. Cells were placed on pads made of 1% agarose in water. Images were
350	acquired on Nikon Eclipse E600 at exposure times detailed in main text.
351	
352	Image analysis. Cell outlines were traced using Oufti (69). Demographs were
353	generated using tools built into the program. Intensity profiles of non-septating labeled
354	cells only were generated using MATLAB code described in (40). Polarity ratios were
355	calculated by combining signal values for 15% of the cell length on either pole and
356	dividing the sum by total cell fluorescence. Beeswarm plots and boxplots generated on
357	R studio. Super plots were generated as described in (70).
358	
359	Membrane fractionation and western blotting. Wildtype M. smegmatis and cells
360	expressing RodA-mRFP were grown to $OD_{600} \sim 0.6$ and lysed by nitrogen cavitation.
361	Lysates were separated into cytoplasm and membrane fractions by ultracentrifugation
362	at 35,000 rpm for 2 hours. Protein concentration was adjusted to 560 μ g/mL. Cell lysate
363	or fractionated samples were separated by SDS–PAGE on a 4-20% polyacrylamide gel

- and transferred to a PVDF membrane. The membrane was blocked with 3% skim milk
- in PBS + 0.05% Tween-80 (PBST) and then incubated overnight with primary
- 366 monoclonal mouse anti-RFP. Antibodies were detected with appropriate secondary
- 367 antibodies conjugated to horseradish peroxidase (GE Healthcare, Chicago, IL).
- 368 Membranes were rinsed in PBS + 0.05% Tween-20 before visualization.
- 369

370 Main Figures

372 Figure 1: RodA and PonA1 localize around cell periphery under basal conditions.

- 373 (a) Enzymes involved in (i, ii) peptidoglycan-, (iii) arabinogalactan-, and (iv, v)
- 374 mycomembrane synthesis were fused to mRFP and imaged at exposure of (i) 5 s or (ii-
- 375 v) 4 s. Scale bars = 5 μ m. (b) Normalized fluorescence intensity profiles for mRFP
- tagged enzymes. 93<n<121. (c) Localization of RodA-mRFP and PonA1 compared by
- (i) polarity ratio calculated as the signal from 15% of the cell length on either pole,

- divided by signal from the entire cell. *t*-test, p < 0.001; (ii,iii) normalized demographs.
- 379 112<n<118.

385	picolyl azide AF488. All images acquired at 1 s exposure. Dim signal from boxed cells
386	enhanced for visibility. Scale bars = 5 μ m (b) Total fluorescence per cell. <i>t</i> -test, <i>p</i> <
387	0.001 (c) Fluorescence signal localization of wildtype <i>M. smegmatis</i> and $\Delta rodA$
388	represented by (i) raw fluorescence intensity profile; (ii) polarity ratio. <i>t</i> -test, $p < 0.001$
389	(iii) demographs. 168 <n<816. (d)<="" experiments="" independent="" of="" representative="" td="" three=""></n<816.>
390	Total fluorescence per cell following 30 minutes of 0, 100, or 500 μ g/mL moenomycin.
391	Significance determined using analysis of variance (ANOVA) followed by a Tukey post
392	hoc test to conduct pairwise comparisons. ***, $p < 0.001$ (e) Fluorescence signal
393	localization from wildtype cells untreated and treated with 100 or 500 $\mu\text{g/mL}$
394	moenomycin for 30 minutes represented by (i) raw fluorescence intensity profile; (ii)
395	polarity ratio, <i>t</i> -test, ***, <i>p</i> < 0.005; (iii) demographs. 285 <n<433.< td=""></n<433.<>
396	
397	
398	

411 Figure 4: RodA contributes to damage-induced relocalization of peptidoglycan

412 **assembly.** At the end of lysozyme/mutanolysin treatment, nascent cell wall in wild-type

- 413 (a) or $\Delta rodA$ (b) or moenomycin treated cells (c) was labeled with alkyne-D-alanine-D-
- 414 alanine as in Fig. 2a and (i) imaged at 1s exposure (bottom panel is the same image
- 415 with enhanced signal for visualization), compare to untreated in Fig. 2a (ii) Normalized
- 416 fluorescence intensity profiles comparing relative signal from untreated and treated
- 417 cells. (iii) Super plots of cell wall labeling polarity ratio (signal from both poles divided by
- 418 total cell fluorescence) from 3 independent experiments, each color represents an
- 419 experiment. *t*-test in (a), p<0.05, (b), *p* > 0.1, (c), *p*<0.01 102<n<826. Scale bars = 5
- 420 µm.
- 421

(R), wildtype + rodA-mRFP. While cultures were normalized to $OD_{600} = 0.05$ prior to 427 428 treatment, the uncomplemented mutant and RodA overexpression strains consistently 429 had higher and lower CFU than wildtype at t = 0, respectively. This is likely due to the 430 differences in cell length between the four strains (29) (Fig. S1). To better highlight the 431 effects of mutanolysin/lysozyme we calculated the fold change in CFU between treated 432 and untreated cells after two hours. n = 4 independent experiments, two of which done 433 in triplicate. Significance determined using analysis of variance (ANOVA) followed by a 434 Tukey post hoc test to conduct pairwise comparisons. *, p < 0.05, only significant 435 relationship portrayed. 436

437

438

439 **Figure 6: Spatial flexibility model for peptidoglycan assembly.** (a) under basal

440 conditions PonA1 and RodA overlap substantially but not completely; new cell wall is

441	assembled asymmetrically and enriched at the poles. (b, left and middle) upon rodA
442	deletion and aPBP inhibition new cell wall assembly is disproportionally reduced at the
443	poles. (b, right) upon cell wall damage MurG redistributes from the poles to the cell
444	periphery, as does new cell wall. (c, left) in the absence of RodA cell wall assembly is
445	not shifted to the lateral cell under stress. (c, right) when aPBPs are inhibited cell wall
446	assembly redistributes upon damage.
447	
448	
449	
450	
451	
452	
453	
454	
455	
456	
457	
458	
459	
460	
461	
462	
463	

464 Supplementary data

465

477

478 Figure S2: RodA-mRFP fusion localizes to the plasma membrane with

- 479 **minimal degradation.** Lysates from *M. smegmatis* +/- *rodA-mRFP* were
- 480 separated into cytoplasmic (cyt) and membrane (mem) fractions by
- 481 ultracentrifugation and immunoblotted with anti-RFP antibodies. Protein
- 482 concentration normalized.

485 **Figure S3: Polarity of cell wall synthesis detected with TAMRA.** Polarity ratio of cell

- 486 wall labeling (bright pole signal/total cell fluorescence) in wildtype and $\Delta rodA +/-$
- 487 mutanolysin/lysozyme. Nascent peptidoglycan labeled as in Fig. 2a except that click
- 488 chemistry detection was with picolyl azide-TAMRA.
- 489
- 490

491

492 Figure S4: Mutanolysin/lysozyme treatment leads to cell-wide damage. (a)

- 493 Muramidases mutanolysin and lysozyme break the linkages between neighbouring
- 494 glycans *N*-acetylglucosamine and *N*-acetylmuramic acid in the peptidoglycan backbone
- (b) Phase contrast images of wildtype or $\Delta rodA M$. smegmatis +/-
- 496 mutanolysin/lysozyme. Scale bars = 5 μ m. (c) *M. smegmatis* was labeled with 1 μ M
- 497 RADA, a D-amino acid monopeptide that we previously showed incorporates into
- 498 peptidoglycan via L,D-transpeptidases (40) and coats the cell wall evenly after overnight
- incubation with a low concentration (62). After washing, the culture was treated with

500 mutanolysin/lysozyme and loss of fluorescence along the length of the cells was 501 quantitated. As expected, after 2 hours labeling loss was observed at the poles in 502 untreated cells. Loss of fluorescence at the poles of lysozyme/mutanolysin-treated M. 503 smegmatis was not as pronounced, consistent with its slow growth in the presence of 504 the enzymes (Figure 5a). At this time point, sidewall loss of fluorescence was greatly 505 enhanced with enzyme treatment. Although mycobacterial growth precludes 506 interpretation of cell wall loss at the poles, these data suggest that 507 lysozyme/mutanolysin-mediated cell wall loss occurs along the *M. smegmatis* sidewall. 508 Signal not normalized. 58<n<102.

509

510 Figure S5: RodA-mRFP and PonA1-mRFP location in cells treated with

- 511 **Iysozyme/mutanolysin**. Representative images of (a) RodA-mRFP and (b) PonA1-
- 512 mRFP imaged following mutanolysin/lysozyme treatment. Compare to Figure 1a. Scale
- 513 bars = 5 µm.

515 Figure S6: RodA relocalization is not observed in live cells. (a) Staining with dead 516 stain SYTOX green reveals that there are no viable cells that display RodA-mRFP polar 517 relocalization phenotype associated with mutanolysin/lysozyme treatment. Scale bars = 518 5 µm. (b) Cells expressing RodA-mRFP were treated +/- mutanolysin/lysozyme then 519 stained with SYTOX green. Only cells that did not stain green, *i.e.*, deemed viable, were 520 included in Oufti followed by MATLAB analysis.

522

523 Figure S7: Effect of moenomycin and cell wall digesting enzymes on growth of

524 wildtype and $\Delta rodA$. (a) Wildtype and (b) $\Delta rodA M$. smegmatis were treated +/-

525 moenomycin (moen) for 30 minutes; mutanolysin/lysozyme (mut/lys) for 60 minutes; or

526 moenomycin followed by mutanolysin/lysozyme. Tenfold serial dilutions were plated

following indicated treatment. Moenomycin inhibits growth of wildtype and of $\Delta rodA M$.

528 *smegmatis;* Mutanolysin/lysozyme treatment also inhibits growth in both strains;

529 Combination of moenomycin and mutanolysin/lysozyme treatments does not have an

530 obvious additive effect in either strain. Experiment was performed in triplicate and

531 representative data are shown. a and b not comparable.

534 Figure S8: RodA is not required for growth in *M. smegmatis*.

- 535
- 536
- 537
- 538 **Table S1: Primers used for fluorescent fusion constructs.**
- 539

gene of	
interest	primers for <i>M. smegmatis</i> gene
	TTAATTAAGAAGGAGATATACATatgatgacgacgcaaccccag
rodA-mRFP	gaCGTCCTCGGAGGAGGCcgagccgcctaccttttcgatcacctcgg
	GCTTAATTAAGAAGGAGATATACATatgttgatcaggtccattgctgtg
lcp1-mRFP	CGTCCTCGGAGGAGGCcgagccgccgttcacgcactgcgggtcgttgg
	CTTAATTAAGAAGGAGATATACATatgcgcggcattgcagcatggaaag

fbpC	
(MSMEG_3580	
)-mRFP	GTCCTCGGAGGAGGCcgagccgcccgtggcggactgagcgccgagcacc
fbpC	CTTAATTAAGAAGGAGATATACATatgagacgtgggttgagtctggttc
(MSMEG_3580	
)-mRFP	CGTCCTCGGAGGAGGCcgagccgcccttgatggtggcgaccagctcacc
	<i>mRFP</i> primers
	gatcgaaaaggtaggcggctcgGCCTCCTCCGAGGACGtcatca
rodA-mRFP	CCCAATTAATTAGCTAAAGCTTtcaGGCGCCGGTGGAGTGgc
	gatgaCGTCCTCGGAGGAGGCcgagccgccgttcacgcactgcgggtcg
	CCCAATTAATTAGCTAAAGCTTtcaGGCGCCGGTGGAGTGgcggc
lcp1-mRFP	cctc
fbpC	gatgaCGTCCTCGGAGGAGGCcgagccgcccgtggcggactgagcgccg
(MSMEG_3580	CCCAATTAATTAGCTAAAGCTTtcaGGCGCCGGTGGAGTGgcggc
)-mRFP	cctc
fbpC	gatgaCGTCCTCGGAGGAGGCcgagccgcccttgatggtggcgaccagc
(MSMEG_3580	CCCAATTAATTAGCTAAAGCTTtcaGGCGCCGGTGGAGTGgcggc
)-mRFP	cctc

544 **References**

~	1	_
7	4	٦.
-		-

546

547 548 Fernandes S, Sao-Jose C. 2018. Enzymes and Mechanisms Employed by Tailed 1. 549 Bacteriophages to Breach the Bacterial Cell Barriers. Viruses 10. 550 Hamada S, Torii M, Kotani S, Masuda N, Ooshima T, Yokogawa K, Kawata S. 1978. 2. 551 Lysis of Streptococcus mutans cells with mutanolysin, a lytic enzyme prepared from a 552 culture liquor of Streptomyces globisporus 1829. Arch Oral Biol 23:543-9. 553 3. Ragland SA, Criss AK. 2017. From bacterial killing to immune modulation: Recent 554 insights into the functions of lysozyme. PLoS Pathog 13:e1006512. 555 4. Stamp GW, Poulsom R, Chung LP, Keshav S, Jeffery RE, Longcroft JA, Pignatelli M, 556 Wright NA. 1992. Lysozyme gene expression in inflammatory bowel disease. 557 Gastroenterology 103:532-8. 558 5. Nash JA, Ballard TN, Weaver TE, Akinbi HT. 2006. The peptidoglycan-degrading 559 property of lysozyme is not required for bactericidal activity in vivo. J Immunol 177:519-560 26. 561 6. Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D. 2008. Cytoplasmic 562 steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 32:168-207. 563 7. Emami K, Guyet A, Kawai Y, Devi J, Wu LJ, Allenby N, Daniel RA, Errington J. 2017. 564 RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for 565 the peptidoglycan polymerase pathway. Nat Microbiol 2:16253. 566 8. Meeske AJ, Riley EP, Robins WP, Uehara T, Mekalanos JJ, Kahne D, Walker S, Kruse 567 AC, Bernhardt TG, Rudner DZ. 2016. SEDS proteins are a widespread family of 568 bacterial cell wall polymerases. Nature 537:634-638. 569 Zhao H, Patel V, Helmann JD, Dorr T. 2017. Don't let sleeping dogmas lie: new views of 9. 570 peptidoglycan synthesis and its regulation. Mol Microbiol 106:847-860. 571 Cho H, Wivagg CN, Kapoor M, Barry Z, Rohs PDA, Suh H, Marto JA, Garner EC, 10. Bernhardt TG. 2016. Bacterial cell wall biogenesis is mediated by SEDS and PBP 572 573 polymerase families functioning semi-autonomously. Nat Microbiol 1:16172. 574 11. Dominguez-Escobar J, Chastanet A, Crevenna AH, Fromion V, Wedlich-Soldner R, 575 Carballido-Lopez R. 2011. Processive movement of MreB-associated cell wall 576 biosynthetic complexes in bacteria. Science 333:225-8. 577 12. Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T. 2011. Coupled, 578 circumferential motions of the cell wall synthesis machinery and MreB filaments in B. 579 subtilis. Science 333:222-5. 580 13. van Teeffelen S, Wang S, Furchtgott L, Huang KC, Wingreen NS, Shaevitz JW, Gitai Z. 581 2011. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc 582 Natl Acad Sci U S A 108:15822-7. 583 14. Goffin C, Ghuysen JM. 1998. Multimodular penicillin-binding proteins: an enigmatic 584 family of orthologs and paralogs. Microbiol Mol Biol Rev 62:1079-93. 585 Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. 2008. The penicillin-binding 15. 586 proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32:234-587

58.

5 00	17	
588	16.	Vigouroux A, Cordier B, Aristov A, Alvarez L, Ozbaykal G, Chaze T, Oldewurtel ER,
589		Matondo M, Cava F, Bikard D, van Teeffelen S. 2020. Class-A penicillin binding
590		proteins do not contribute to cell shape but repair cell-wall defects. Elife 9.
591	17.	Mueller EA, Egan AJ, Breukink E, Vollmer W, Levin PA. 2019. Plasticity of Escherichia
592		coli cell wall metabolism promotes fitness and antibiotic resistance across environmental
593		conditions. Elife 8.
594	18.	Paradis-Bleau C, Markovski M, Uehara T, Lupoli TJ, Walker S, Kahne DE, Bernhardt
595		TG. 2010. Lipoprotein cofactors located in the outer membrane activate bacterial cell
596		wall polymerases. Cell 143:1110-20.
597	19.	Typas A, Banzhaf M, van den Berg van Saparoea B, Verheul J, Biboy J, Nichols RJ,
598		Zietek M, Beilharz K, Kannenberg K, von Rechenberg M, Breukink E, den Blaauwen T,
599		Gross CA, Vollmer W. 2010. Regulation of peptidoglycan synthesis by outer-membrane
600		proteins. Cell 143:1097-109.
601	20.	Greene NG, Fumeaux C, Bernhardt TG, 2018, Conserved mechanism of cell-wall
602	-	synthase regulation revealed by the identification of a new PBP activator in Pseudomonas
603		aeruginosa. Proc Natl Acad Sci U S A 115:3150-3155.
604	21	Murphy SG Murtha AN Zhao Z Alvarez L Diebold P Shin IH VanNieuwenhze MS
605	21.	Cava F Dorr T 2021 Class A Penicillin-Binding Protein-Mediated Cell Wall Synthesis
606		Promotes Structural Integrity during Pentidoglycan Endopentidase Insufficiency in
607		Vibrio cholerae mBio 12
608	22	Dersch S Mehl I Stuckenschneider I Mayer B Roth I Rohrhach A Graumann PI
600	<i>LL</i> .	2020 Super-Resolution Microscopy and Single-Molecule Tracking Reveal Distinct
610		A daptive Dynamics of MreB and of Cell Wall Synthesis Enzymes, Front Microbiol
611		11.1046
612	22	Pillaudaau C. Chastanat A. Vao Z. Carnillaau C. Mirauza N. Framian V. Carhallida
612	23.	Long R. 2017. Contracting mechanisms of growth in two model red shared heatering
614		Not Commun 8,15270
014 615	24	Nat Commun 6.15570. Were S. D. Hellend C. Hellendel S. 2021. Mur A accore mutations uncourds
013	24.	want of SKP, Holland G, Halbedel S. 2021. MurA escape mutations uncouple
010		peptidogiycan biosynthisis from PrkA singaling. $bioKxiv$ preprint
01/		ao1: <u>nttps://do1.org/10.1101/2021.09.09.459578</u>
618	25	
619	25.	Henrichtreise B, Brunke M, Viollier PH. 2016. Bacterial Surfaces: The Wall that SEDS
620	26	Built. Curr Biol 26:R1158-R1160.
621	26.	Otten C, Brilli M, Vollmer W, Viollier PH, Salje J. 2018. Peptidoglycan in obligate
622	~-	intracellular bacteria. Mol Microbiol 107:142-163.
623	27.	Atwal S, Chuenklin S, Bonder EM, Flores J, Gillespie JJ, Driscoll TP, Salje J. 2021.
624		Discovery of a Diverse Set of Bacteria That Build Their Cell Walls without the Canonical
625		Peptidoglycan Polymerase aPBP. mBio 12:e0134221.
626	28.	Williams MA, Aliashkevich A, Krol E, Kuru E, Bouchier JM, Rittichier J, Brun YV,
627		VanNieuwenhze MS, Becker A, Cava F, Brown PJB. 2021. Unipolar Peptidoglycan
628		Synthesis in the Rhizobiales Requires an Essential Class A Penicillin-Binding Protein.
629		mBio doi:10.1128/mBio.02346-21:e0234621.
630	29.	Arora D, Chawla Y, Malakar B, Singh A, Nandicoori VK. 2018. The transpeptidase
631		PbpA and noncanonical transglycosylase RodA of Mycobacterium tuberculosis play
632		important roles in regulating bacterial cell lengths. J Biol Chem 293:6497-6516.
633	30.	Cole ST. 1998. Comparative mycobacterial genomics. Curr Opin Microbiol 1:567-71.

634	31.	Sher JW, Lim HC, Bernhardt TG. 2021. Polar Growth in Corynebacterium glutamicum
635		Has a Flexible Cell Wall Synthase Requirement. mBio 12:e0068221.
636	32.	Sassetti CM, Rubin EJ. 2003. Genetic requirements for mycobacterial survival during
637		infection. Proc Natl Acad Sci U S A 100:12989-94.
638	33.	Dragset MS, Ioerger TR, Zhang YJ, Maerk M, Ginbot Z, Sacchettini JC, Flo TH, Rubin
639		EJ, Steigedal M. 2019. Genome-wide Phenotypic Profiling Identifies and Categorizes
640		Genes Required for Mycobacterial Low Iron Fitness. Sci Rep 9:11394.
641	34.	Hett EC, Chao MC, Rubin EJ. 2010. Interaction and modulation of two antagonistic cell
642		wall enzymes of mycobacteria. PLoS Pathog 6:e1001020.
643	35.	Vandal OH, Roberts JA, Odaira T, Schnappinger D, Nathan CF, Ehrt S. 2009. Acid-
644		susceptible mutants of Mycobacterium tuberculosis share hypersusceptibility to cell wall
645		and oxidative stress and to the host environment. J Bacteriol 191:625-31.
646	36.	Smith CM, Richard E. Baker, Megan K. Proulx, Bibhuti B. Mishra, Jarukit E. Long, Sae
647		Woong Park, Ha-Na Lee, VMichael C. Kiritsy, Michelle M. Bellerose, Andrew J. Olive,
648		Kenan C. Murphy, Kadamba Papavinasasundaram, Frederick J. Boehm, Charlotte J.
649		Reames, Rachel K. Meade, Brea K. Hampton, Colton L. Linnertz, Ginger D. Shaw, Pablo
650		Hock, Timothy A. Bell, View Sabine Ehrt, Dirk Schnappinger, Fernando Pardo-Manuel
651		de Villena, Martin T. Ferris, Thomas R. Ioerger, Christopher M. Sassetti. 2021. Host-
652		pathogen genetic interactions underlie tuberculosis susceptibility. bioRxiv preprint
653		doi: <u>https://doi.org/10.1101/2020.12.01.405514</u> .
654	37.	Zhang YJ, Reddy MC, Ioerger TR, Rothchild AC, Dartois V, Schuster BM, Trauner A,
655		Wallis D, Galaviz S, Huttenhower C, Sacchettini JC, Behar SM, Rubin EJ. 2013.
656		Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell
657		155:1296-308.
658	38.	Kieser KJ, Boutte CC, Kester JC, Baer CE, Barczak AK, Meniche X, Chao MC, Rego
659		EH, Sassetti CM, Fortune SM, Rubin EJ. 2015. Phosphorylation of the Peptidoglycan
660		Synthase PonA1 Governs the Rate of Polar Elongation in Mycobacteria. PLoS Pathog
661		11:e1005010.
662	39.	Rengarajan J, Bloom BR, Rubin EJ. 2005. Genome-wide requirements for
663		Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci
664		U S A 102:8327-32.
665	40.	Garcia-Heredia A, Pohane AA, Melzer ES, Carr CR, Fiolek TJ, Rundell SR, Lim HC,
666		Wagner JC, Morita YS, Swarts BM, Siegrist MS. 2018. Peptidoglycan precursor
667		synthesis along the sidewall of pole-growing mycobacteria. Elife 7.
668	41.	Daitch AK, Goley ED. 2020. Uncovering Unappreciated Activities and Niche Functions
669		of Bacterial Cell Wall Enzymes. Curr Biol 30:R1170-R1175.
670	42.	Dion MF, Kapoor M, Sun Y, Wilson S, Ryan J, Vigouroux A, van Teeffelen S,
671		Oldenbourg R, Garner EC. 2019. Bacillus subtilis cell diameter is determined by the
672		opposing actions of two distinct cell wall synthetic systems. Nat Microbiol 4:1294-1305.
673	43.	Garcia-Heredia A, Kado T, Sein CE, Puffal J, Osman SH, Judd J, Gray TA, Morita YS,
674		Siegrist MS. 2021. Membrane-partitioned cell wall synthesis in mycobacteria. Elife 10.
675	44.	Baranowski C, Welsh MA, Sham LT, Eskandarian HA, Lim HC, Kieser KJ, Wagner JC,
676		McKinney JD, Fantner GE, Ioerger TR, Walker S, Bernhardt TG, Rubin EJ, Rego EH.
677		2018. Maturing Mycobacterium smegmatis peptidoglycan requires non-canonical
678		crosslinks to maintain shape. Elife 7.

679	45.	Harrison J. Llovd G. Joe M. Lowary TL. Revnolds E. Walters-Morgan H. Bhatt A.
680		Lovering A, Besra GS, Alderwick LJ. 2016. Lcp1 Is a Phosphotransferase Responsible
681		for Ligating Arabinogalactan to Peptidoglycan in Mycobacterium tuberculosis, mBio 7.
682	46.	Belisle JT, Vissa VD, Sievert T, Takavama K, Brennan PJ, Besra GS, 1997. Role of the
683	-	major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276:1420-
684		2
685	47	Aldridge BB Fernandez-Suarez M Heller D Ambravaneswaran V Irimia D Toner M
686	.,.	Fortune SM 2012 Asymmetry and aging of mycobacterial cells lead to variable growth
687		and antibiotic suscentibility. Science 335:100-4
688	48	Botella H. Yang G. Querfelli O. Ehrt S. Nathan CF. Vaubourgeix I. 2017. Distinct
689	10.	Spatiotemporal Dynamics of Pentidoglycan Synthesis between Mycobacterium
690		spectroeniporal Dynamics of repracing year Synthesis between Myeobaeterium
601	10	Joyce G. Williams KI. Rohb M. Noens F. Tizzano B. Shahrezaei V. Robertson BD. 2012
607	т).	Cell division site placement and asymmetric growth in mycobacteria PL oS One
603		7: 14582
60/	50	Meniche V. Otten P. Siegrist MS. Baer CE. Murnhy KC. Bertozzi CP. Sassetti CM
605	50.	2014. Subpolar addition of now call well is directed by DivIVA in myschooteria. Proc
695		Not A cad Sci U S A 111:E3243 51
607	51	Page EH Audatte DE Pubin EL 2017 Deletion of a myschootorial divisions factor
608	51.	collanses single cell phoneturic beterogeneity. Nature 546:152-157
600	52	Singh D. Nitherwal D.C. Democh M. Dettersson DM. Virschorn I.A. Descurte S. 2012
700	52.	Singi B, Nutai wai KO, Kainesii W, Fettersson BM, Kirseboni LA, Dasgupta S. 2015.
700		Asymmetric growth and division in Mycobacterium spp., compensatory mechanisms for
701	52	Ion-mediai septa. Mol Microbiol 88:04-70.
702	55.	2014 A new metabolic cell well labelling method reveals pertide sharen in Chlamadia
703		2014. A new metabolic cell-wall labelling method reveals peptidoglycan in Chiamydia
/04 705	51	trachomatis. Nature 506:50/-10.
705	34.	Sarkar S, Libby EA, Plageon SE, Dworkin J, Pires MM. 2010. In VIVO Probe of Lipid II-
/00	55	Interacting Proteins. Angew Chem Int Ed Engl 55:8401-4.
/0/	33.	weizer P. 2005. Syntheses around the transgrycosynation step in peptidogrycan
/08	5(biosynthesis. Chem Rev 105:4610-60.
/09	56.	Gampe CM, Isukamoto H, Doud EH, Walker S, Kanne D. 2013. Tuning the
/10		moenomycin pharmacophore to enable discovery of bacterial cell wall synthesis
/11		inhibitors. J Am Chem Soc $135:37/6-9$.
/12	57.	Ustash B, Walker S. 2010. Moenomycin family antibiotics: chemical synthesis,
/13	7 0	biosynthesis, and biological activity. Nat Prod Rep 2/:1594-61/.
/14	58.	Rebets Y, Lupoli I, Qiao Y, Schirner K, Villet R, Hooper D, Kahne D, Walker S. 2014.
715		Moenomycin resistance mutations in Staphylococcus aureus reduce peptidoglycan chain
716	50	length and cause aberrant cell division. ACS Chem Biol 9:459-67.
717	59.	Yang S, Zhang F, Kang J, Zhang W, Deng G, Xin Y, Ma Y. 2014. Mycobacterium
718		tuberculosis Rv1096 protein: gene cloning, protein expression, and peptidoglycan
719	<u> </u>	deacetylase activity. BMC Microbiol 14:174.
720	60.	Kang CM, Nyayapathy S, Lee JY, Suh JW, Husson RN. 2008. Wag31, a homologue of
721		the cell division protein DivIVA, regulates growth, morphology and polar cell wall
722	<i></i>	synthesis in mycobacteria. Microbiology 154:725-35.
723	61.	Nguyen L, Scherr N, Gattield J, Walburger A, Pieters J, Thompson CJ. 2007. Antigen 84,
724		an effector of pleiomorphism in Mycobacterium smegmatis. J Bacteriol 189:7896-910.

725	62.	Melzer ES, Sein CE, Chambers JJ, Sloan Siegrist M. 2018. DivIVA concentrates
726		mycobacterial cell envelope assembly for initiation and stabilization of polar growth.
727		Cytoskeleton (Hoboken) 75:498-507.
728	63.	Thanky NR, You
729		
730	ng DB	, Robertson BD. 2007. Unusual features of the cell cycle in mycobacteria: polar-restricted
731		growth and the snapping-model of cell division. Tuberculosis (Edinb) 87:231-6.
732	64.	Pidgeon SE, Apostolos AJ, Nelson JM, Shaku M, Rimal B, Islam MN, Crick DC, Kim
733		SJ, Pavelka MS, Kana BD, Pires MM. 2019. L,D-Transpeptidase Specific Probe Reveals
734		Spatial Activity of Peptidoglycan Cross-Linking. ACS Chem Biol 14:2185-2196.
735	65.	Monteiro JM, Pereira AR, Reichmann NT, Saraiva BM, Fernandes PB, Veiga H, Tavares
736		AC, Santos M, Ferreira MT, Macario V, VanNieuwenhze MS, Filipe SR, Pinho MG.
737		2018. Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of
738		cytokinesis. Nature 554:528-532.
739	66.	Rismondo J, Halbedel S, Grundling A. 2019. Cell Shape and Antibiotic Resistance Are
740		Maintained by the Activity of Multiple FtsW and RodA Enzymes in Listeria
741		monocytogenes. mBio 10.
742	67.	Siegrist MS, Swarts BM, Fox DM, Lim SA, Bertozzi CR. 2015. Illumination of growth,
743		division and secretion by metabolic labeling of the bacterial cell surface. FEMS
744		Microbiol Rev 39:184-202.
745	68.	Siegrist MS, Whiteside S, Jewett JC, Aditham A, Cava F, Bertozzi CR. 2013. (D)-Amino
746		acid chemical reporters reveal peptidoglycan dynamics of an intracellular pathogen. ACS
747		Chem Biol 8:500-5.
748	69.	Paintdakhi A, Parry B, Campos M, Irnov I, Elf J, Surovtsev I, Jacobs-Wagner C. 2016.
749		Oufti: an integrated software package for high-accuracy, high-throughput quantitative
750		microscopy analysis. Mol Microbiol 99:767-77.
751	70.	Lord SJ, Velle KB, Mullins RD, Fritz-Laylin LK. 2020. SuperPlots: Communicating
752		reproducibility and variability in cell biology. J Cell Biol 219.
753		