47 research outputs found

    Spatially resolved measurement of helium atom emission line spectrum in scrape-off layer of Heliotron J by near-infrared Stokes spectropolarimetry

    Get PDF
    1視線の観測のみで核融合プラズマ中のヘリウム近赤外輝線の発光分布を推定. 京都大学プレスリリース. 2022-09-26.For plasma spectroscopy, Stokes spectropolarimetry is used as a method to spatially invert the viewing-chord-integrated spectrum on the basis of the correspondence between the given magnetic field profile along the viewing chord and the Zeeman effect appearing on the spectrum. Its application to fusion-related toroidal plasmas is, however, limited owing to the low spatial resolution as a result of the difficulty in distinguishing between the Zeeman and Doppler effects. To resolve this issue, we increased the relative magnitude of the Zeeman effect by observing a near-infrared emission line on the basis of the greater wavelength dependence of the Zeeman effect than of the Doppler effect. By utilizing the increased Zeeman effect, we are able to invert the measured spectrum with a high spatial resolution by Monte Carlo particle transport simulation and by reproducing the measured spectra with the semiempirical adjustment of the recycling condition at the first walls. The inversion result revealed that when the momentum exchange collisions of atoms are negligible, the velocity distribution of core-fueling atoms is mainly determined by the initial distribution at the time of recycling. The inversion result was compared with that obtained using a two-point emission model used in previous studies. The latter approximately reflects the parameters of atoms near the emissivity peak

    Response of a core coherent density oscillation on electron cyclotron resonance heating in Heliotron J plasma

    Get PDF
    We report properties of a coherent density oscillation observed in the core region and its response to electron cyclotron resonance heating (ECH) in Heliotron J plasma. The measurement was performed using a multi-channel beam emission spectroscopy system. The density oscillation is observed in a radial region between the core and the half radius. The poloidal mode number is found to be 1 (or 2). By modulating the ECH power with 100 Hz, repetition of formation and deformation of a strong electron temperature gradient, which is likely ascribed to be an electron internal transport barrier, is realized. Amplitude and rotation frequency of the coherent density oscillation sitting at the strong electron temperature gradient location are modulated by the ECH, while the poloidal mode structure remains almost unchanged. The change in the rotation velocity in the laboratory frame is derived. Assuming that the change of the rotation velocity is given by the background E × B velocity, a possible time evolution of the radial electric field was deduced

    Impurity emission characteristics of long pulse discharges in Large Helical Device

    Get PDF
    Line spectra from intrinsic impurity ions have been monitored during the three kinds of long-pulse discharges (ICH, ECH, NBI). Constant emission from the iron impurity shows no preferential accumulation of iron ion during the long-pulse operations. Stable Doppler ion temperature has been also measured from Fe XX, C V and C III spectra

    Recent Results from LHD Experiment with Emphasis on Relation to Theory from Experimentalist’s View

    Get PDF
    he Large Helical Device (LHD) has been extending an operational regime of net-current free plasmas towardsthe fusion relevant condition with taking advantage of a net current-free heliotron concept and employing a superconducting coil system. Heating capability has exceeded 10 MW and the central ion and electron temperatureshave reached 7 and 10 keV, respectively. The maximum value of β and pulse length have been extended to 3.2% and 150 s, respectively. Many encouraging physical findings have been obtained. Topics from recent experiments, which should be emphasized from the aspect of theoretical approaches, are reviewed. Those are (1) Prominent features in the inward shifted configuration, i.e., mitigation of an ideal interchange mode in the configuration with magnetic hill, and confinement improvement due to suppression of both anomalous and neoclassical transport, (2) Demonstration ofbifurcation of radial electric field and associated formation of an internal transport barrier, and (3) Dynamics of magnetic islands and clarification of the role of separatrix

    Application of He I Line Intensity Ratio Method to Lyot-Filter-Based Imaging Spectrometry on MAP-II Divertor Simulator

    No full text

    Thomson Scattering Measurements of Helium Recombining Plasmas in the Divertor Simulator MAP-II

    No full text
    corecore