6 research outputs found

    Theoretical Aspects of Science with Radioactive Nuclear Beams

    Get PDF
    Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei from the neighborhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.Comment: 26 ReVTeX pages, 11 Postscript figures, uses epsf.sty, to be published in: Theme Issue on Science with Beams of Radioactive Nuclei, Philosophical Transactions, ed. by W. Gelletl

    Optimal pair density functional for description of nuclei with large neutron excess

    Full text link
    Toward a universal description of pairing properties in nuclei far from stability, we extend the energy density functional by enriching the isovector density dependence in the particle-particle channel (pair density functional, pair-DF). We emphasize the necessity of both the linear and quadratic isovector density terms. The parameters are optimized by the Hartree-Fock-Bogoliubov calculation for 156 nuclei of the mass number A=118-196 and the asymmetry parameter (N-Z)/A<0.25. We clarify that the pair-DF should include the isovector density dependence in order to take into account the effect of the isoscalar and isovector effective masses in the particle-hole channel consistently. The different Skyrme forces can give the small difference in the pairing gaps toward the neutron drip line, if the optimal pair-DF consistent with the particle-hole channel is employed.Comment: 11 pages, 17 figures. We clarify the connection between the effective masses and the pairing density functional in the revised paper. The justification of the mixed type pairing force is also discusse

    The Path to Improved Reaction Rates for Astrophysics

    Get PDF
    This review focuses on nuclear reactions in astrophysics and, more specifically, on reactions with light ions (nucleons and alpha particles) proceeding via the strong interaction. It is intended to present the basic definitions essential for studies in nuclear astrophysics, to point out the differences between nuclear reactions taking place in stars and in a terrestrial laboratory, and to illustrate some of the challenges to be faced in theoretical and experimental studies of those reactions. The discussion revolves around the relevant quantities for astrophysics, which are the astrophysical reaction rates. The sensitivity of the reaction rates to the uncertainties in the prediction of various nuclear properties is explored and some guidelines for experimentalists are also provided.Comment: 100 pages, 33 figures, 1 table; accepted for publication in Int. J. Mod. Phys. E (scheduled for February 2011 issue); the formatting here differs in that it includes a table of contents and numbered paragraphs 5.4.2.1-5.4.2.10; v2: updated references; v3: typos fixed; v4: final typo fix, content similar to published version
    corecore