194 research outputs found

    A separability criterion for density operators

    Full text link
    We give a necessary and sufficient condition for a mixed quantum mechanical state to be separable. The criterion is formulated as a boundedness condition in terms of the greatest cross norm on the tensor product of trace class operators.Comment: REVTeX, 5 page

    Transition amplitudes and sewing properties for bosons on the Riemann sphere

    Full text link
    We consider scalar quantum fields on the sphere, both massive and massless. In the massive case we show that the correlation functions define amplitudes which are trace class operators between tensor products of a fixed Hilbert space. We also establish certain sewing properties between these operators. In the massless case we consider exponential fields and have a conformal field theory. In this case the amplitudes are only bilinear forms but still we establish sewing properties. Our results are obtained in a functional integral framework.Comment: 33 page

    Leibniz Seminorms and Best Approximation from C*-subalgebras

    Full text link
    We show that if B is a C*-subalgebra of a C*-algebra A such that B contains a bounded approximate identity for A, and if L is the pull-back to A of the quotient norm on A/B, then L is strongly Leibniz. In connection with this situation we study certain aspects of best approximation of elements of a unital C*-algebra by elements of a unital C*-subalgebra.Comment: 24 pages. Intended for the proceedings of the conference "Operator Algebras and Related Topics". v2: added a corollary to the main theorem, plus several minor improvements v3: much simplified proof of a key lemma, corollary to main theorem added v4: Many minor improvements. Section numbers increased by

    Applications of Automata and Graphs: Labeling-Operators in Hilbert Space I

    Full text link
    We show that certain representations of graphs by operators on Hilbert space have uses in signal processing and in symbolic dynamics. Our main result is that graphs built on automata have fractal characteristics. We make this precise with the use of Representation Theory and of Spectral Theory of a certain family of Hecke operators. Let G be a directed graph. We begin by building the graph groupoid G induced by G, and representations of G. Our main application is to the groupoids defined from automata. By assigning weights to the edges of a fixed graph G, we give conditions for G to acquire fractal-like properties, and hence we can have fractaloids or G-fractals. Our standing assumption on G is that it is locally finite and connected, and our labeling of G is determined by the "out-degrees of vertices". From our labeling, we arrive at a family of Hecke-type operators whose spectrum is computed. As applications, we are able to build representations by operators on Hilbert spaces (including the Hecke operators); and we further show that automata built on a finite alphabet generate fractaloids. Our Hecke-type operators, or labeling operators, come from an amalgamated free probability construction, and we compute the corresponding amalgamated free moments. We show that the free moments are completely determined by certain scalar-valued functions.Comment: 69 page

    Recursive boson system in the Cuntz algebra O∞{\cal O}_{\infty}

    Full text link
    Bosons and fermions are often written by elements of other algebras. M. Abe gave a recursive realization of the boson by formal infinite sums of the canonical generators of the Cuntz algebra O∞{\cal O}_{\infty}. We show that such formal infinite sum always makes sense on a certain dense subspace of any permutative representation of O∞{\cal O}_{\infty}. In this meaning, we can regard as if the algebra B{\cal B} of bosons was a unital ∗*-subalgebra of O∞{\cal O}_{\infty} on a given permutative representation by keeping their unboundedness. By this relation, we compute branching laws arising from restrictions of representations of O∞{\cal O}_{\infty} on B{\cal B}. For example, it is shown that the Fock representation of B{\cal B} is given as the restriction of the standard representation of O∞{\cal O}_{\infty} on B{\cal B}.Comment: 18 p
    • …
    corecore