7 research outputs found

    In Vitro Sensitivity Test of <i>Fusarium</i> Species from Weeds and Non-Gramineous Plants to Triazole Fungicides

    No full text
    Fusarium species are common plant pathogens that cause serious crop losses worldwide. Fusarium spp. colonize not only the main host plants, crops, but also alternative hosts. The effectiveness of fungicide use in disease management ranges from very successful to possibly promoting the growth of the pathogen. Triazole fungicides are widely used to control these pathogens due to their broad-spectrum activity and systemic nature. This paper reviews the sensitivity of 40 Fusarium strains isolated from weeds, non-gramineous plants, and spring wheat to metconazole, prothioconazole, and tebuconazole. The effect of fungicides was determined by the percentage inhibition of F. graminearum, F. culmorum, F. sporotrichioides, and F. avenaceum fungal mycelial growth. The 50% effective concentration (EC50) values of all isolates on metconazole were lower than 2.9 mg L−1, prothioconazole EC50 ranged from 0.12 to 23.6 mg L−1, and tebuconazole ranged from 0.09 to 15.6 mg L−1. At 0.00025–0.025 mg L−1, the fungicides were ineffective, except for the growth of the F. avenaceum species. It was observed that isolates from weeds were more sensitive to low concentrations of fungicide than isolates from crop plants. In general, information is scarce regarding the comparison of fungicide resistance in Fusarium isolates from weed and crop plants, making this study an additional contribution to the existing knowledge base

    Pathogenicity of Asymptomatically Residing Fusarium Species in Non-Gramineous Plants and Weeds to Spring Wheat under Greenhouse Conditions

    No full text
    Despite significant efforts in recent decades to combat Fusarium head blight (FHB), this disease remains one of the most important and widely studied diseases of wheat and other cereal plants. To date, studies have focused on small grain cereals as hostplants for these pathogens, but it was recently discovered that asymptomatic non-gramineous plants and weeds can serve as alternative sources of fungi associated with FHB. The aim of this study was to evaluate the pathogenicity of Fusarium avenaceum, F. culmorum, F. graminearum and F. sporotrichioides isolated from non-gramineous plants and weed species to spring wheat under greenhouse conditions. A total of 91 Fusarium isolates, including 45 from weeds and 46 from non-gramineous plants were floret inoculated at mid anthesis. The FHB incidence and severity (%) of inoculated heads and the area under the disease progress curve (AUDPC) were calculated. To determine yield losses, the weight of 1000 grains (TGW) was evaluated. Results of the research showed that FHB severity (%) values in Fusarium spp.-inoculated heads from non-gramineous plants varied from 9.3% to 69.6% and AUDPC values ranged from 161.5% to 1044.6%. TGW was most significantly reduced by the F. culmorum isolates BN26r and BN39fl from Brassica napus and isolates BV15.1l and BV142.1pe from Beta vulgaris (37%, 30%, 28.8% and 31.8% respectively, compared to the water control). In Fusarium-inoculated heads from weeds, FHB severity values ranged from 6.2% to 81.0% and AUDPC values varied from 134.2% to 1206.6%. TGW was most significantly decreased by CBP1401r isolate from Capsella bursa-pastoris (52%). The study results suggest that the pathogenicity of Fusarium species isolated from different hosts to wheat more strongly depends on the Fusarium species and strain than the hostplant. Under greenhouse conditions, F. culmorum strain groups obtained from weeds, non-gramineous plants and Triticum were more pathogenic to wheat than the water control and other Fusarium species

    Soil Fungistasis against <i>Fusarium Graminearum</i> under Different tillage Systems

    No full text
    The establishment of the harmful pathogen Fusarium graminearum in different agroecosystems may strongly depend on the ability of the soils to suppress its development and survival. This study aimed to evaluate the influence of different soil tillage systems (i.e., conventional tillage, reduced tillage and no-tillage) on soil fungistasis against F. graminearum. Soil samples were collected three times during the plant growing season in 2016 and 2017 from a long-term, 20-year soil tillage experiment. The F. graminearum in the soil samples was quantified by real-time qPCR. The soil fungistasis was evaluated by the reduction in the radial growth of F. graminearum in an in vitro assay. The antagonistic activity of the soil bacteria was tested using the dual culture method. The F. graminearum DNA contents in the soils were negatively correlated with soil fungistasis (r = –0.649 *). F. graminearum growth on the unfumigated soil was reduced by 70–87% compared to the chloroform fumigated soil. After the plant vegetation renewal, the soil fungistasis intensity was higher in the conventionally tilled fields than in the no-tillage. However, no significant differences were obtained among the tillage treatments at the mid-plant growth stage and after harvesting. 23 out of 104 bacteria isolated from the soil had a moderate effect, and only 1 had a strong inhibitory effect on the growth of F. graminearum. This bacterium was assigned 100% similarity to the Bacillus amyloliquefaciens Hy7 strain (gene bank no: JN382250) according to the sequence of the 16S ribosome subunit coding gene. The results of our study suggest that the presence of F. graminearum in soil is suppressed by soil fungistasis; however, the role of tillage is influenced by other factors, such as soil biological activity, type and quantity of plant residues and environmental conditions

    Ekologinio ir intensyvaus ūkininkavimo įtaka dirvožemio gyvybingumui

    No full text
    Lietuvos agrarinių ir miškų mokslų centro filialas Miškų institutasLietuvos agrarinių ir miškų mokslų centro filialas Žemdirbystės instituta
    corecore