6 research outputs found

    From D3-Branes to Lifshitz Space-Times

    Full text link
    We present a simple embedding of a z=2 Lifshitz space-time into type IIB supergravity. This is obtained by considering a stack of D3-branes in type IIB supergravity and deforming the world-volume by a plane wave. The plane wave is sourced by the type IIB axion. The superposition of the plane wave and the D3-branes is 1/4 BPS. The near horizon geometry of this configuration is a 5-dimensional z=0 Schroedinger space-time times a 5-sphere. This geometry is also 1/4 BPS. Upon compactification along the direction in which the wave is traveling the 5-dimensional z=0 Schroedinger space-time reduces to a 4-dimensional z=2 Lifshitz space-time. The compactification is such that the circle is small for weakly coupled type IIB string theory. This reduction breaks the supersymmetries. Further, we propose a general method to construct analytic z=2 Lifshitz black brane solutions. The method is based on deforming 5-dimensional AdS black strings by an axion wave and reducing to 4-dimensions. We illustrate this method with an example.Comment: version 3: version published in Classical and Quantum Gravit

    Observational Bounds on Cosmic Doomsday

    Full text link
    Recently it was found, in a broad class of models, that the dark energy density may change its sign during the evolution of the universe. This may lead to a global collapse of the universe within the time t_c ~ 10^{10}-10^{11} years. Our goal is to find what bounds on the future lifetime of the universe can be placed by the next generation of cosmological observations. As an example, we investigate the simplest model of dark energy with a linear potential V(\phi) =V_0(1+\alpha\phi). This model can describe the present stage of acceleration of the universe if \alpha is small enough. However, eventually the field \phi rolls down, V(\phi) becomes negative, and the universe collapses. The existing observational data indicate that the universe described by this model will collapse not earlier than t_c > 10 billion years from the present moment. We show that the data from SNAP and Planck satellites may extend the bound on the "doomsday" time to t_c > 40 billion years at the 95% confidence level.Comment: 11 pages, 6 figures, revtex

    An Inflaton Mass Problem in String Inflation from Threshold Corrections to Volume Stabilization

    Full text link
    Inflationary models whose vacuum energy arises from a D-term are believed not to suffer from the supergravity eta problem of F-term inflation. That is, D-term models have the desirable property that the inflaton mass can naturally remain much smaller than the Hubble scale. We observe that this advantage is lost in models based on string compactifications whose volume is stabilized by a nonperturbative superpotential: the F-term energy associated with volume stabilization causes the eta problem to reappear. Moreover, any shift symmetries introduced to protect the inflaton mass will typically be lifted by threshold corrections to the volume-stabilizing superpotential. Using threshold corrections computed by Berg, Haack, and Kors, we illustrate this point in the example of the D3-D7 inflationary model, and conclude that inflation is possible, but only for fine-tuned values of the stabilized moduli. More generally, we conclude that inflationary models in stable string compactifications, even D-term models with shift symmetries, will require a certain amount of fine-tuning to avoid this new contribution to the eta problem.Comment: 25 page

    Testing the Cosmological Constant as a Candidate for Dark Energy

    Get PDF
    It may be difficult to single out the best model of dark energy on the basis of the existing and planned cosmological observations, because many different models can lead to similar observational consequences. However, each particular model can be studied and either found consistent with observations or ruled out. In this paper, we concentrate on the possibility to test and rule out the simplest and by far the most popular of the models of dark energy, the theory described by general relativity with positive vacuum energy (the cosmological constant). We evaluate the conditions under which this model could be ruled out by the future observations made by the Supernova/Acceleration Probe SNAP (both for supernovae and weak lensing) and by the Planck Surveyor cosmic microwave background satellite.Comment: 6 pages, 2 figures, revtex

    Brane Inflation, Solitons and Cosmological Solutions: I

    Full text link
    In this paper we study various cosmological solutions for a D3/D7 system directly from M-theory with fluxes and M2-branes. In M-theory, these solutions exist only if we incorporate higher derivative corrections from the curvatures as well as G-fluxes. We take these corrections into account and study a number of toy cosmologies, including one with a novel background for the D3/D7 system whose supergravity solution can be completely determined. This new background preserves all the good properties of the original model and opens up avenues to investigate cosmological effects from wrapped branes and brane-antibrane annihilation, to name a few. We also discuss in some detail semilocal defects with higher global symmetries, for example exceptional ones, that could occur in a slightly different regime of our D3/D7 model. We show that the D3/D7 system does have the required ingredients to realise these configurations as non-topological solitons of the theory. These constructions also allow us to give a physical meaning to the existence of certain underlying homogeneous quaternionic Kahler manifolds.Comment: Harvmac, 115 pages, 9 .eps figures; v2: typos corrected, references added and the last section expanded; v3: Few minor typos corrected and references added. Final version to appear in JHE

    The Bekenstein Formula and String Theory (N-brane Theory)

    Get PDF
    A review of recent progress in string theory concerning the Bekenstein formula for black hole entropy is given. Topics discussed include p-branes, D-branes and supersymmetry; the correspondence principle; the D- and M-brane approach to black hole entropy; the D-brane analogue of Hawking radiation, and information loss; D-branes as probes of black holes; and the Matrix theory approach to charged and neutral black holes. Some introductory material is included.Comment: 53 pages, LaTeX. v3: Typos fixed, minor updates, references added, brief Note Added on AdS/CF
    corecore