139 research outputs found

    Corn Seed Spacing Uniformity as Affected by Seed Tube Condition

    Get PDF
    Variation in corn seed spacing from a John Deere MaxEmergeTM Plus Vacumeter planter was evaluated on the University of Nebraska Planter Test Stand in a laboratory setting for two seed tube conditions (new or worn) with two examples of corn seed shape (round or flat). Seed spacing uniformity was measured using three seed spacing uniformity parameters: Coefficient of Precision (CP3), ISO Multiples index, and ISO Miss index. Differences were detected in all three seed spacing uniformity parameters due to the seed tube condition. The new seed tubes had better seed spacing uniformity than the worn seed tubes, within each example of the seed shapes (round or flat) used in this experiment. For the seed used in this experiment, the round corn seed had better seed spacing uniformity than the flat corn seed, within each of the seed tube conditions (new or worn). A recommended schedule for seed tube replacement to maintain seed spacing uniformity has not been developed, and more research in this area is needed. Currently, sugarbeet growers in western Nebraska use one of three options: a) test one of their seed tubes on a good planter test stand every year before sugarbeet planting season and replace all tubes when results indicate it will improve seed spacing uniformity to the desired level; b) feel the inside front surface of the seed tube every year before sugarbeet planting season and change seed tubes when the feel of the surface changes from a slick plastic to a very fine sandpaper; or c) replace seed tubes before sugarbeet planting season when they have planted over approximately 150 acres of corn per planter row with their current seed tubes

    Variation in Herbivore-Mediated Indirect Effects of an Invasive Plant on a Native Plant

    Get PDF
    Theory predicts that damage by a shared herbivore to a secondary host plant species may either be higher or lower in the vicinity of a preferred host plant species. To evaluate the importance of ecological factors, such as host plant proximity and density, in determining the direction and strength of such herbivore-mediated indirect effects, we quantified oviposition by the exotic weevil Rhinocyllus conicus on the native wavyleaf thistle Cirsium undulatum in midgrass prairie on loam soils in the upper Great Plains, USA. Over three years (2001–2003), the number of eggs laid by R. conicus on C. undulatum always decreased significantly with distance (0–220 m) from a musk thistle (Carduus nutans L.) patch. Neither the level of R. conicus oviposition on C. undulatum nor the strength of the distance effect was predicted by local musk thistle patch density or by local C. undulatum density (≤ 5 m). The results suggest that high R. conicus egg loads on C. undulatum near musk thistle resulted from the native thistle’s co-occurrence with the coevolved preferred exotic host plant and not from the weevil’s response to local host plant density. Mean egg loads on C. undulatum also were greater at sites with higher R. conicus densities. We conclude that both preferred-plant proximity and shared herbivore density strongly affected the herbivore-mediated indirect interaction, suggesting that such interactions are important pathways by which invasive exotic weeds can indirectly impact native plants

    Variation in Herbivore-Mediated Indirect Effects of an Invasive Plant on a Native Plant

    Get PDF
    Theory predicts that damage by a shared herbivore to a secondary host plant species may either be higher or lower in the vicinity of a preferred host plant species. To evaluate the importance of ecological factors, such as host plant proximity and density, in determining the direction and strength of such herbivore-mediated indirect effects, we quantified oviposition by the exotic weevil Rhinocyllus conicus on the native wavyleaf thistle Cirsium undulatum in midgrass prairie on loam soils in the upper Great Plains, USA. Over three years (2001–2003), the number of eggs laid by R. conicus on C. undulatum always decreased significantly with distance (0–220 m) from a musk thistle (Carduus nutans L.) patch. Neither the level of R. conicus oviposition on C. undulatum nor the strength of the distance effect was predicted by local musk thistle patch density or by local C. undulatum density (≤ 5 m). The results suggest that high R. conicus egg loads on C. undulatum near musk thistle resulted from the native thistle’s co-occurrence with the coevolved preferred exotic host plant and not from the weevil’s response to local host plant density. Mean egg loads on C. undulatum also were greater at sites with higher R. conicus densities. We conclude that both preferred-plant proximity and shared herbivore density strongly affected the herbivore-mediated indirect interaction, suggesting that such interactions are important pathways by which invasive exotic weeds can indirectly impact native plants

    Estimation of breed-specific heterosis effects for birth, weaning, and yearling weight in cattle

    Get PDF
    Heterosis, assumed proportional to expected breed heterozygosity, was calculated for 6834 individuals with birth, weaning and yearling weight records from Cycle VII and advanced generations of the U.S. Meat Animal Research Center (USMARC) Germplasm Evaluation (GPE) project. Breeds represented in these data included: Angus, Hereford, Red Angus, Charolais, Gelbvieh, Simmental, Limousin and Composite MARC III. Heterosis was further estimated by proportions of British Ă— British (B Ă— B), British Ă— Continental (B Ă— C) and Continental Ă— Continental (C Ă— C) crosses and by breed-specific combinations. Model 1 fitted fixed covariates for heterosis within biological types while Model 2 fitted random breed-specific combinations nested within the fixed biological type covariates. Direct heritability estimates (SE) for birth, weaning ,and yearling weight for Model 1 were 0.42 (0.04), 0.22 (0.03), and 0.39 (0.05), respectively. The direct heritability estimates (SE) of birth, weaning, and yearling weight for Model 2 were the same as Model 1, except yearling weight heritability was 0.38 (0.05). The B Ă— B, B Ă— C, and C Ă— C heterosis estimates for birth weight were 0.47 (0.37), 0.75 (0.32), and 0.73 (0.54) kg, respectively. The B Ă— B, B Ă— C, and C Ă— C heterosis estimates for weaning weight were 6.43 (1.80), 8.65 (1.54), and 5.86 (2.57) kg, respectively. Yearling weight estimates for B Ă— B, B Ă— C, and C Ă— C heterosis were 17.59(3.06), 13.88 (2.63), and 9.12 (4.34) kg, respectively. Differences did exist among estimates of breed-specific heterosis for weaning and yearling weight, although the variance component associated with breed-specific heterosis was not significant. These results illustrate that there are differences in breed-specific heterosis and exploiting these differences can lead to varying levels of heterosis among mating plans

    Estimation of breed-specific heterosis effects for birth, weaning, and yearling weight in cattle

    Get PDF
    Heterosis, assumed proportional to expected breed heterozygosity, was calculated for 6834 individuals with birth, weaning and yearling weight records from Cycle VII and advanced generations of the U.S. Meat Animal Research Center (USMARC) Germplasm Evaluation (GPE) project. Breeds represented in these data included: Angus, Hereford, Red Angus, Charolais, Gelbvieh, Simmental, Limousin and Composite MARC III. Heterosis was further estimated by proportions of British Ă— British (B Ă— B), British Ă— Continental (B Ă— C) and Continental Ă— Continental (C Ă— C) crosses and by breed-specific combinations. Model 1 fitted fixed covariates for heterosis within biological types while Model 2 fitted random breed-specific combinations nested within the fixed biological type covariates. Direct heritability estimates (SE) for birth, weaning ,and yearling weight for Model 1 were 0.42 (0.04), 0.22 (0.03), and 0.39 (0.05), respectively. The direct heritability estimates (SE) of birth, weaning, and yearling weight for Model 2 were the same as Model 1, except yearling weight heritability was 0.38 (0.05). The B Ă— B, B Ă— C, and C Ă— C heterosis estimates for birth weight were 0.47 (0.37), 0.75 (0.32), and 0.73 (0.54) kg, respectively. The B Ă— B, B Ă— C, and C Ă— C heterosis estimates for weaning weight were 6.43 (1.80), 8.65 (1.54), and 5.86 (2.57) kg, respectively. Yearling weight estimates for B Ă— B, B Ă— C, and C Ă— C heterosis were 17.59(3.06), 13.88 (2.63), and 9.12 (4.34) kg, respectively. Differences did exist among estimates of breed-specific heterosis for weaning and yearling weight, although the variance component associated with breed-specific heterosis was not significant. These results illustrate that there are differences in breed-specific heterosis and exploiting these differences can lead to varying levels of heterosis among mating plans

    Genomic Instability in Regions Adjacent to a Highly Conserved \u3ci\u3epch\u3c/i\u3e Prophage in \u3ci\u3eEscherichia coli\u3c/i\u3e O157:H7 Generates Diversity in Expression Patterns of the LEE Pathogenicity Island

    Get PDF
    The LEE pathogenicity island has been acquired on multiple occasions within the different lineages of enteropathogenic and enterohemorrhagic Escherichia coli. In each lineage, LEE expression is regulated by complex networks of pathways, including core pathways shared by all lineages and lineage-specific pathways. Within the O157:H7 lineage of enterohemorrhagic E. coli, strain-to-strain variation in LEE expression has been observed, implying that expression patterns can diversify even within highly related subpopulations. Using comparative genomics of E. coli O157:H7 subpopulations, we have identified one source of strain-level variation affecting LEE expression. The variation occurs in prophage-dense regions of the genome that lie immediately adjacent to the late regions of the pch prophage carrying pchA, pchB, pchC, and a newly identified pch gene, pchX. Genomic segments extending from the holin S region to the pchA, pchB, pchC, and pchX genes of their respective prophage are highly conserved but are nonetheless embedded within adjacent genomic segments that are extraordinarily variable, termed pch adjacent genomic regions (pch AGR). Despite the remarkable degree of variation, the pattern of variation in pch AGR is highly correlated with the distribution of phylogenetic markers on the backbone of the genome. Quantitative analysis of transcription from the LEE1 promoter further revealed that variation in the pch AGR has substantial effects on absolute levels and patterns of LEE1 transcription. Variation in the pch AGR therefore serves as a mechanism to diversify LEE expression patterns, and the lineage-specific pattern of pch AGR variation could ultimately influence ecological or virulence characteristics of subpopulations within each lineage

    Comparison of the Contributions of Heat-Labile Enterotoxin and Heat-Stable Enterotoxin b to the Virulence of Enterotoxigenic \u3ci\u3eEscherichia coli \u3c/i\u3ein F4ac Receptor-Positive Young Pigs

    Get PDF
    In swine, the most common and severe enterotoxigenic Escherichia coli (ETEC) infections are caused by strains that express K88 (F4)+ fimbriae, heat-labile enterotoxin (LT), heat-stable enterotoxin b (STb), and enteroaggregative E. coli heat-stable toxin 1. Previous studies based on a design that involved enterotoxin genes cloned into a nontoxigenic fimbriated strain have suggested that LT but not STb plays an important role in dehydrating diarrheal disease in piglets study, we compared these two toxins in terms of importance for piglets \u3e1 week old with a study design that involved construction of isogenic single- and double-deletion mutants and inoculation of 9-day-old F4ac receptor-positive gnotobiotic piglets. Based on the postinoculation percent weight change per h and serum bicarbonate concentrations, the virulence of the STb- mutant (ΔestB) did not significantly differ from that of the parent. However, deletion of the LT genes (ΔeltAB) in the STb- mutant resulted in a complete abrogation of weight loss, dehydration, and metabolic acidosis in inoculated pigs, and LT complementation restored the virulence of this strain. These results support the hypothesis that LT is a more significant contributor than STb to the virulence of F4+ ETEC infections in young F4ac receptor-positive pigs less than 2 weeks old. However, in contrast to previous studies with gnotobiotic piglets, there was no evidence that the expression of LT enhanced the ability of the F4+ ETEC strain to colonize the small intestine

    Bioassays of Compounds with Potential Juvenoid Activity on \u3ci\u3eDrosophila melanogaster\u3c/i\u3e: Juvenile Hormone III, Bisepoxide Juvenile Hormone III, and Methyl Farnesoates

    Get PDF
    Metabolites of the 6,7,10,11 bisepoxide juvenile hormone III (JHB3), and other potential juvenoids, were tested for juvenile hormone activity using early instar or early stage pupae of Drosophila mela-nogaster. Importantly, methyl farnesoates were tested as they might have JH-like activity on Dipteran juveniles. Larvae were exposed to compounds in medium, or the compounds were applied to white puparia. In the assays employed in the present study, there was no indication for JH activity associ-ated with the metabolites of JHB3. The activity of methyl farnesoate (MF) was higher than that of JH III and far greater than bisepoxide JH III. As opposed to the two endogenous juvenile hormones, methyl farnesoate has weak activity in the white puparial bioassay. When fluorinated forms of me-thyl farnesoate, which is unlikely to be converted to JH, were applied to Drosophila medium to which fly eggs were introduced, there was a high degree of larval mortality, but no evidence of subsequent mortality at the pupal stage. One possible explanation for the results is that methyl farnesoate is active as a hormone in larval stages, but has little activity at the pupal stage where only juvenile hormone has a major effect

    Genomic Instability in Regions Adjacent to a Highly Conserved \u3ci\u3epch\u3c/i\u3e Prophage in \u3ci\u3eEscherichia coli\u3c/i\u3e O157:H7 Generates Diversity in Expression Patterns of the LEE Pathogenicity Island

    Get PDF
    The LEE pathogenicity island has been acquired on multiple occasions within the different lineages of enteropathogenic and enterohemorrhagic Escherichia coli. In each lineage, LEE expression is regulated by complex networks of pathways, including core pathways shared by all lineages and lineage-specific pathways. Within the O157:H7 lineage of enterohemorrhagic E. coli, strain-to-strain variation in LEE expression has been observed, implying that expression patterns can diversify even within highly related subpopulations. Using comparative genomics of E. coli O157:H7 subpopulations, we have identified one source of strain-level variation affecting LEE expression. The variation occurs in prophage-dense regions of the genome that lie immediately adjacent to the late regions of the pch prophage carrying pchA, pchB, pchC, and a newly identified pch gene, pchX. Genomic segments extending from the holin S region to the pchA, pchB, pchC, and pchX genes of their respective prophage are highly conserved but are nonetheless embedded within adjacent genomic segments that are extraordinarily variable, termed pch adjacent genomic regions (pch AGR). Despite the remarkable degree of variation, the pattern of variation in pch AGR is highly correlated with the distribution of phylogenetic markers on the backbone of the genome. Quantitative analysis of transcription from the LEE1 promoter further revealed that variation in the pch AGR has substantial effects on absolute levels and patterns of LEE1 transcription. Variation in the pch AGR therefore serves as a mechanism to diversify LEE expression patterns, and the lineage-specific pattern of pch AGR variation could ultimately influence ecological or virulence characteristics of subpopulations within each lineage
    • …
    corecore