20 research outputs found

    Insect toxins – selective pharmacological tools and drug/chemical leads

    Get PDF
    Insect toxins comprise a diverse array of chemicals ranging from small molecules, polyamines and peptide toxins. Many target nervous system and neuromuscular ion channels and so rapidly affect the behaviour of animals to which the toxin is applied or injected. Other modes of action have also been identified. Wasps, bees, flies, beetles and ants generate a rich arsenal of channel-active toxins, some of which offer selective pharmacological probes that target particular ion channels, while others act on more than one type of channel. Philanthotoxins from the digger wasp have been fruitful in adding to our understanding of ligand-gated ion channels both in the nervous system and at neuromuscular junctions. Fire ants produce the toxic alkaloid solenopsin, a molecule which has stimulated attempts to generate synthetic compounds with insecticidal activity. Apamin from bee venom targets calcium-activated potassium channels, which can in turn influence the release of neuropeptides. Melittin, another bee venom component, is a membrane-acting peptide. The saliva of the assassin bug contains toxins that target the voltage-gated calcium channels of their insect prey. Certain beetles produce diamphotoxin, a haemolytic peptide toxin with traditional use as an arrow poison and others generate leptinotarsin with similar properties. Mastoparan is a powerful peptide toxin present in the venom of wasps. Its toxic actions can be engineered out leaving a potent antimicrobial molecule of interest. In this short review we describe the actions of selected insect toxins and evaluate their potential as neuroactive pharmacological tools, candidate lead molecules for insect control and therapeutic candidates with potential antimicrobial, antiviral and anti-cancer applications

    Methodology of calculation of construction and hydrodynamic parameters of a foam layer apparatus for mass-transfer processes

    Get PDF
    Промислова реалізація методу стабілізації газорідинного шару дозволяє значно розширити галузь застосування пінних апаратів і відкриває нові можливості інтенсифікації технологічних процесів з одночасним створенням маловідходних технологій. У статті встановлені основні параметри, що впливають на гідродинаміку пінних апаратів, розглянуті основні конструкції та режими роботи пінних апаратів. Виявлено зв'язок гідродинамічних параметрів. Розглянуто гідродинамічні закономірності пінного шару. Вказані фактори, що впливають на процес масообміну, як в газовій, так і в рідкій фазах. Проведений аналіз ряду досліджень показав, що перспективним напрямком інтенсифікації процесу масообміну є розробка апаратів з трифазним псевдозрідженим шаром зрошуваної насадки складних форм із сітчастих матеріалів. Отже, необхідне проведення спеціальних досліджень гідродинамічних режимів роботи апарату з сітчастою насадкою і визначенням параметрів, що впливають на швидкість переходу насадки з одного режиму в інший.Industrial implementation of the stabilization method of the gas-liquid layer can significantly expand the field of use of foaming apparatus and opens up new opportunities for intensifying technological processes with the simultaneous creation of low-waste technologies. The article establishes the basic parameters influencing the hydrodynamics of foam apparatus, considers the basic constructions and operating modes of foam apparatus. The connection of hydrodynamic parameters is revealed. The hydrodynamic laws of the foam layer are considered. The indicated factors affecting the process of mass transfer, both in the gas and in the liquid phases. The conducted analysis of a number of studies showed that the perspective direction of intensification of the mass transfer process is the development of apparatuses with a three-phase fluidized bed of an irrigated nozzle of complex forms with mesh materials
    corecore