125 research outputs found

    Reactivity of tri(2-furyl)phosphine (Pfu\u3csub\u3e3\u3c/sub\u3e) with [Mn\u3csub\u3e2\u3c/sub\u3e(CO)\u3csub\u3e10–\u3cem\u3en\u3c/em\u3e\u3c/sub\u3e(NCMe)\u3csub\u3e\u3cem\u3en\u3c/em\u3e\u3c/sub\u3e] (\u3cem\u3en\u3c/em\u3e = 0–2): X-ray Structure of \u3cem\u3emer\u3c/em\u3e-[Mn(CO)\u3csub\u3e3\u3c/sub\u3e(η\u3csup\u3e1\u3c/sup\u3e-C\u3csub\u3e4\u3c/sub\u3eH\u3csub\u3e3\u3c/sub\u3eO)(Pfu\u3csub\u3e3\u3c/sub\u3e)\u3csub\u3e2\u3c/sub\u3e]

    Get PDF
    In the search for new examples of systems that self-assemble into cyclic metal–organic architectures, the six isomers of X,Y′-bis(di(1H-pyrazolyl)methane)-1,1′-biphenyl, LXY, and their silver(I) trifluoromethanesulfonate complexes were prepared. Five of the six silver complexes gave crystals suitable for single crystal X-ray diffraction, with only the microcrystalline derivative of 2,3′-bis(di(1H-pyrazolyl)methane)-1,1′-biphenyl, L23, proving to be unsuitable for this analysis. Of the structurally characterized silver(I) complexes, that with L22 showed an unusual trans-spanning chelating coordination mode to silver. At the same time the ligand was also bound to a second silver center giving rise to a cyclic supramolecular isomer with a 22-membered metallacycle. The complex of L34 also gave a cyclic dication but with a remarkable 28-membered metallacycle ring. The remaining three derivatives were polymeric. The results of this study underscore that a 120° angle between dipyrazolylmethyl moieties across aromatic spacers will give rise to a cyclic dication but this is not an exclusive requirement for the formation of cyclic architectures. Also, the supramolecular structures of complexes are assembled via a variety of noncovalent interactions involving the di(pyrazolyl)methyl cation most notably by weak hydrogen bonding interactions involving the methine hydrogen and an oxygen atom of the triflate anion

    Cleavage of Ge–S and C–H bonds in the reaction of electron-deficient [Os₃(CO)₈(μ-H)(μ₃-Ph₂PCH₂P(Ph)C₆H₄)] with Ph₃GeSPh: Generation of thiophenol derivatives [Os₃(CO)₈(μ-H)(μ-SPh)(μ-dppm)] and [Os₃(CO)₇(μ-H)(μ-SPh)(μ₃-SC₆H₄)(μ-dppm)]

    Get PDF
    Heating the electron-deficient [Os₃(CO)₈(μ-H)(μ₃-Ph₂PCH₂P(Ph)C₆H₄)] (1) and Ph₃GeSPh in benzene at 80 °C led to the thiolato bridged compounds, [Os₃(CO)₈(μ-H)(μ-SPh)(μ-dppm)] (2) and [Os₃(CO)₇(μ-H)(μ-SPh)(μ₃-SC₆H₄)(μ-dppm)] (3), formed by cleavage of Ge–S and C–S bonds of the ligand, in 40% and 17% yields, respectively. Both compounds 2 and 3 have been characterized by a combination of elemental analysis, infrared and ¹H NMR spectroscopic data together with single crystal X-ray crystallography. Compound 3 contains an open triangle of osmium atoms bridged by a SPh and SC₆H₄ ligands on opposite sides of the cluster with a dppm ligand bridging one of the Os–Os edges. Compound 2 consists of a closed triangular cluster of osmium atoms with a bridging SPh, and a bridging hydride ligand on the same Os–Os edge, and a dppm ligand bridging one of the remaining Os–Os edges

    P–C and C–H Bond Cleavages of dppm in the Thermal Reaction of [Ru\u3csub\u3e3\u3c/sub\u3e(CO)\u3csub\u3e10\u3c/sub\u3e(μ-dppm)] with Benzothiophene: X-ray structures of [Ru\u3csub\u3e6\u3c/sub\u3e(μ-CO)(CO)\u3csub\u3e13\u3c/sub\u3e{μ\u3csub\u3e4\u3c/sub\u3e-PhP(C\u3csub\u3e6\u3c/sub\u3eH\u3csub\u3e4\u3c/sub\u3e)PPh}(μ\u3csub\u3e6\u3c/sub\u3e-C)] and [Ru\u3csub\u3e4\u3c/sub\u3e(CO)\u3csub\u3e9\u3c/sub\u3e(μ\u3csub\u3e3\u3c/sub\u3e-η\u3csup\u3e2\u3c/sup\u3e-PhPCH\u3csub\u3e2\u3c/sub\u3ePPh\u3csub\u3e2\u3c/sub\u3e)(μ\u3csub\u3e4\u3c/sub\u3e-η\u3csup\u3e6\u3c/sup\u3e:η\u3csup\u3e1\u3c/sup\u3e:η\u3csup\u3e1\u3c/sup\u3e-C\u3csub\u3e6\u3c/sub\u3eH\u3csub\u3e4\u3c/sub\u3e)(μ-H)]

    Get PDF
    The thermal reaction of [Ru3(CO)10(μ-dppm)] (1) with benzothiophene in refluxing toluene gives a complex mixture of products. These include the known compounds [Ru2(CO)6{μ-CH2PPh(C6H4)PPh}] (2), [Ru2(CO)6{μ-C6H4PPh(CH2)PPh}] (3), [Ru3(CO)9{μ3-η3-(Ph)PCH2P(Ph)C6H4}] (4) and [Ru3(CO)10{μ-η2-PPh(CH2)(C6H4)PPh}] (6), as well as the new clusters [Ru6(μ-CO)(CO)13{μ3-η2-PhP(C6H4)PPh}(μ6-C)] (5) and [Ru4(CO)9(μ3-η2-PhPCH2PPh2)(μ4-η6:η1:η1-C6H4)(μ-H)] (7). The solid-state molecular structures of 5 and 7 were confirmed by single crystal X-ray analyses. Compound 5 consists of interesting example of a hexaruthenium interstitial carbido cluster having a tetradentate diphosphine ligand derived from the activation of P–C and C–H bonds of the dppm ligand in 1. The tetranuclear compound 7 consists of a unique example of a non-planar spiked triangular metal fragment of ruthenium [Ru(1), Ru(2) and Ru(3)] unit with Ru(4) being bonded to Ru(1). The μ4-η1:η6:η1-benzyne ligand in this compound represents a previously uncharacterized bonding mode for benzyne. Compounds 5 and 7 do not contain any benzothiophene-derived ligand. The reaction of 4 with benzothiophene gives 2, 3, 5 and 6. Thermolysis of 1 in refluxing toluene gives 2, 3 and 4; none of 5 and 7 is detected in reaction mixture

    Ruthenium and osmium carbonyl clusters incorporating stannylene and stannyl ligands

    Get PDF
    The reaction of [Ru₃ (CO)₁₂] with Ph₃SnSPh in refluxing benzene furnished the bimetallic Ru-Sn compound [Ru₃(CO)₈(μ-SPh)₂(μ3-SnPh₂)(SnPh₃)₂] 1 which consists of a SnPh₂ stannylene bonded to three Ru atoms to give a planar tetra-metal core, with two peripheral SnPh₃ ligands. The stannylene ligand forms a very short bond to one Ru atom [Sn-Ru 2.538(1) Å] and very long bonds to the other two [Sn-Ru 3.074(1) Å]. The germanium compound [Ru₃(CO)₈(μ-SPh)₂(μ₃-GePh₂)(GePh₃)₂] 2 was obtained from the reaction of [Ru₃ (CO)₁₂] with Ph₃GeSPh and has a similar structure to that of 1 as evidenced by spectroscopic data. Treatment of [Os₃(CO)₁₀(MeCN)₂] with Ph₃SnSPh in refluxing benzene yielded the bimetallic Os-Sn compound [Os₃(CO)₉(μ-SPh)(μ₃-SnPh₂)(MeCN)(ƞ¹-C₆H₅)] 3. Cluster 3 has a superficially similar planar metal core, but with a different bonding mode with respect to that of 1. The Ph₂Sn group is bonded most closely to Os(2) and Os(3) [2.7862(3) and 2.7476(3) Å respectively] with a significantly longer bond to Os(1), 2.9981(3) Å indicating a weak back-donation to the Sn. The reaction of the bridging dppm compound [Ru₃(CO)₁₀(μ-dppm)] with Ph₃SnSPh afforded [Ru₃(CO)₆(μ-dppm)(μ₃-S)(μ₃-SPh)(SnPh₃)] 5. Compound 5 contains an open triangle of Ru atoms simultaneously capped by a sulfido and a PhS ligand on opposite sides of the cluster with a dppm ligand bridging one of the Ru-Ru edges and a Ph₃Sn group occupying an axial position on the Ru atom not bridged by the dppm ligand

    Decarbonylation Reaction of [Os\u3csub\u3e3\u3c/sub\u3e(CO)\u3csub\u3e10\u3c/sub\u3e(\u3cem\u3eμ\u3c/em\u3e-H)(\u3cem\u3eμ\u3c/em\u3e-SN\u3csub\u3e2\u3c/sub\u3eC\u3csub\u3e4\u3c/sub\u3eH\u3csub\u3e5\u3c/sub\u3e)]: X-ray Structures of the Two Isomers of [Os\u3csub\u3e3\u3c/sub\u3e(CO)\u3csub\u3e9\u3c/sub\u3e(\u3cem\u3eμ\u3c/em\u3e-H)(\u3cem\u3eμ\u3c/em\u3e\u3csub\u3e3\u3c/sub\u3e-\u3cem\u3eη\u3c/em\u3e\u3csup\u3e2\u3c/sup\u3e-SN\u3csub\u3e2\u3c/sub\u3eC\u3csub\u3e4\u3c/sub\u3eH\u3csub\u3e5\u3c/sub\u3e)]

    Get PDF
    The thermal reaction of [Os3(CO)10(μ-H)(μ-SN2C4H5)] (1) at 110 °C afforded the new compound [Os3(CO)9(μ-H)(μ 3-η 2-SN2C4H5)] (2) in 84% yield. Compound 2 exists as two isomers, which differ in the disposition of the bridging hydride ligand. Both of the isomers of 2 have been characterized by a combination of elemental analysis, infrared and 1H NMR spectroscopic data together with single crystal X-ray crystallography. The isomers crystallize together in the triclinic space group P-1 with a = 10.4775(2), b = 13.3056(3), c = 15.0325(3) Å, α = 110.8890(10), β = 99.3880(10), γ = 96.1620(10)°, Z = 2 and V = 1900.31(7) Å3

    Dirhenium Carbonyl Complexes Bearing 2-Vinylpyridine, Morpholine and 1-Methylimidazole Ligands

    Get PDF
    Treatment of the labile compound [Re2(CO)8(MeCN)2] with 2-vinylpyridine in refluxing benzene affords exclusively the new compound [Re2(CO)8(μ-η1:η2-NC5H4CHCH2)] (1) in 39% yield in which the μ-η1:η2-vinylpyridine ligand is coordinated to one Re atom through the nitrogen and to the other Re atom via the olefinic double bond. Reaction of [Re2(CO)8(MeCN)2] with morpholine in refluxing benzene furnishes two compounds, [Re2(CO)9(η1-NC4H9O)] (2) and [Re2(CO)8(η1-NC4H9O)2] (3) in 5% and 29% yields, respectively. Reaction of [Re2(CO)8(MeCN)2] with 1-methylimidazole gives [Re2(CO)8{η1-NC3H3N(CH3)}2] (4) and the mononuclear compound fac-[ReCl(CO)3{η1-NC3H3N(CH3)}2] (5) in 18% and 26% yields, respectively. In the disubstituted compounds 2 and 4, the heterocyclic ligands occupy equatorial coordination sites. The mononuclear compound 5 consists of three CO groups, two N coordinated η1-1-methylimidazole ligands and a terminal Cl ligand. The XRD structures of complexes 1, 3 and 5 are reported

    Investigations of 2-Thiazoline-2-thiol as a Ligand: Synthesis and X-ray Structures of [Mn\u3csub\u3e2\u3c/sub\u3e(CO)\u3csub\u3e7\u3c/sub\u3e(\u3cem\u3eμ\u3c/em\u3e-NS\u3csub\u3e2\u3c/sub\u3eC\u3csub\u3e3\u3c/sub\u3eH\u3csub\u3e4\u3c/sub\u3e)\u3csub\u3e2\u3c/sub\u3e] and [Mn(CO)\u3csub\u3e3\u3c/sub\u3e(PPh\u3csub\u3e3\u3c/sub\u3e)(\u3cem\u3eκ\u3c/em\u3e\u3csup\u3e2\u3c/sup\u3e-NS\u3csub\u3e2\u3c/sub\u3eC\u3csub\u3e3\u3c/sub\u3eH\u3csub\u3e4\u3c/sub\u3e)]

    Get PDF
    Treatment of Mn2(CO)10 with 2-thiazoline-2-thiol in the presence of Me3NO at room temperature afforded the dimanganese complexes [Mn2(CO)7(μ-NS2C3H4)2] (1) and [Mn2(CO)6(μ-NS2C3H4)2] (2) in 51 and 34% yields, respectively. Compound 1 was quantitatively converted into 2 when reacted with one equiv of Me3NO. Reaction of 1 with triphenylphosphine at room temperature furnished the mononuclear complex [Mn(CO)3(PPh3)(κ 2-NS2C3H4)] (3) in 66% yield. All three new complexes have been characterized by elemental analyzes and spectroscopic data together with single crystal X-ray diffraction studies for 1 and 3. Compound 1 crystallizes in the orthorhombic space group Pbca with a = 12.4147(2), b = 16.2416(3), c = 19.0841(4) Å, β = 90°, Z = 8 and V = 3848.01(12) Å3 and 3 crystallizes in the monoclinic space group P 21/n with a = 10.41730(10), b = 14.7710(2), c = 14.9209(2) Å, β = 91.1760(10)°, Z = 4 and V = 2295.45(5) Å3

    An electron-deficient triosmium cluster containing the thianthrene ligand: Synthesis, structure and reactivity of [Os₃(CO)₉(μ3-η2-C₁₂H₇S₂)(μ-H)]

    Get PDF
    Reaction of [Os₃(CO)₁₀(CH₃CN)₂] with thianthrene at 80 °C leads to the nonacarbonyl dihydride compound [Os₃(CO)₉(μ-3,4-η²-C₁₂H₆S₂)(μ-H)₂] (1) and the 46-electron monohydride compound [Os₃(CO)₉(μ₃-η²-C₁₂H₇S₂)(μ-H)] (2). Compound 2 reacts reversibly with CO to give the CO adduct [Os₃(CO)₁₀(μ-η²-C₁₂H₇S₂)(μ-H)] (3) whereas with PPh₃ it gives the addition product [Os₃(CO)₉)(PPh₃)(μ-η²-C₁₂H₇S₂)(μ-H)] (4) as well as the substitution product 1,2-[Os₃(CO)₁₀ ((PPh₃)₂] (5) Compound 2 represents a unique example of an electron-deficient triosmium cluster in which the thianthrene ring is bound to cluster by coordination of the sulfur lone pair and a three-center-two-electron bond with the C(2) carbon which bridges the same edge of the triangle as the hydride. Electrochemical and DFT studies which elucidate the electronic properties of 2 are reported

    Activation of Tri(2-Furyl)Phosphine at a Dirhenium Centre: Formation of Phosphido-Bridged Dirhenium Complexes

    Get PDF
    Reaction of tri(2-furyl)phosphine (PFu3) with [Re2(CO)10−n(NCMe)n] (n = 1, 2) at 40 °C gave the substituted complexes [Re2(CO)10−n(PFu3)n] (1 and 2), the phosphines occupying axial position in all cases. Heating [Re2(CO)10] and PFu3 in refluxing xylene also gives 1 and 2 together with four phosphido-bridged complexes; [Re2(CO)8−n(PFu3)n(μ-PFu2)(μ-H)] (n = 0, 1, 2) (3–5) and [Re2(CO)6(PFu3)2(μ-PFu2)(μ-Cl)] (6) resulting from phosphorus–carbon bond cleavage. A series of separate thermolysis experiments has allowed a detailed reaction pathway to be unambiguously established. A similar reaction between [Re2(CO)10] and PFu3 in refluxing chlorobenzene furnishes four complexes which include 1, 2, 6 and the new binuclear complex [Re2(CO)6(η1-C4H3O)2(μ-PFu2)2] (7). All new complexes have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction studies
    corecore