309 research outputs found

    Systemic immunity shapes the oral microbiome and susceptibility to bisphosphonate‑associated osteonecrosis of the jaw

    Get PDF
    Background Osteonecrosis of the jaw (ONJ) is a rare but serious adverse drug effect linked to long-term and/or high-dose exposure to nitrogen-bisphosphonates (N-BP), the standard of care for the treatment of bone fragility disorders. The mechanism leading to bisphosphonate-associated ONJ (BAONJ) is unclear and optimal treatment strategies are lacking. Recent evidence suggests that BAONJ may be linked to drug-induced immune dysfunction, possibly associated with increased susceptibility to infections in the oral cavity. The objective of this investigation was to comprehensively assess the relationship linking immune function, N-BP exposure, the oral microbiome and ONJ susceptibility. Methods Leukocyte gene expression of factors important for immunity, wound healing and barrier function were assessed by real-time quantitative PCR and the oral microbiome was characterized by 454 pyrosequencing of the 16S rRNA gene in 93 subjects stratified by N-BP exposure and a history of ONJ. Results There were marked differences in the systemic expression of genes regulating immune and barrier functions including RANK (p = 0.007), aryl hydrocarbon receptor (AHR, p < 0.001), and FGF9 (p < 0.001), which were collectively up-regulated in individuals exposed to N-BP without ONJ relative to treatment controls. In contrast, the expression levels of these same genes were significantly down-regulated in those who had experienced BAONJ. Surprisingly, the oral microbiome composition was not directly linked to either BAONJ or N-BP exposure, rather the systemic leukocyte expression levels of RANK, TNFA and AHR each explained 9% (p = 0.04), 12% (p = 0.01), and 7% (p = 0.03) of the oral bacterial beta diversity. Conclusions The oral microbiome is unlikely causative of ONJ, rather individuals with BAONJ lacked immune resiliency which impaired their capacity to respond adequately to the immunological stress of N-BP treatment. This may be the common factor linking N-BP and anti-RANK agents to ONJ in at-risk individuals. Preventive and/or therapeutic strategies should target the wound healing deficits present in those with ONJ

    Pitfalls in the characterization of circulating and tissue-resident human γδ T cells

    Get PDF
    Dissection of the role and function of human γδ T cells and their heterogeneous subsets in cancer, inflammation, and auto-immune diseases is a growing and dynamic research field of increasing interest to the scientific community. Therefore, harmonization and standardization of techniques for the characterization of peripheral and tissue-resident γδ T cells is crucial to facilitate comparability between published and emerging research. The application of commercially available reagents to classify γδ T cells, in particular the combination of multiple Abs, is not always trouble-free, posing major demands on researchers entering this field. Occasionally, even entire γδ T cell subsets may remain undetected when certain Abs are combined in flow cytometric analysis with multicolor Ab panels, or might be lost during cell isolation procedures. Here, based on the recent literature and our own experience, we provide an overview of methods commonly employed for the phenotypic and functional characterization of human γδ T cells including advanced polychromatic flow cytometry, mass cytometry, immunohistochemistry, and magnetic cell isolation. We highlight potential pitfalls and discuss how to circumvent these obstacles

    Autoimmune thyroiditis in antinuclear antibody positive children without rheumatologic disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Children are commonly referred to a pediatric rheumatology center for the laboratory finding of an Anti-nuclear antibody (ANA) of undetermined significance. Previous studies regarding adult rheumatology patients have supported an association between ANA and anti-thyroid antibodies, with the prevalence of thyroid antibodies being significantly higher in patients referred to a rheumatology center for an ANA without evidence of connective tissue disease compared to the general population. The purpose of the present study was to determine the frequency of thyroid antibodies in children referred to a pediatric rheumatology center for a positive ANA without evidence of a connective tissue disease.</p> <p>Methods</p> <p>A retrospective chart review was performed on children who were referred to our pediatric rheumatology center between August 2003 and March 2007 for positive ANA with concurrent thyroid antibody and thyroid function tests performed who did not fulfill criteria for a specific connective tissue disease. Laboratory and clinical features were recorded and analyzed. Mean and standard deviation were used to describe continuous data. Chi-square or Fisher's exact tests were used to compare proportions between variables.</p> <p>Results</p> <p>One-hundred and four ANA-positive patients with concurrent thyroid studies were evaluated (88% female, 93% Caucasian, mean age 11.9 ± 4.0 years). Half of patients had an ANA titer ≥ 1:320. The ANA pattern was speckled in 60% of the patients. Thyroid antibodies were detected in 30% of the patients. Anti-Thyroglobulin (ATG) was detected in 29% and Anti-thyroid peroxidase (ATPO) in 21% of the patients; of these children, 14% had hypothyroidism. ANA pattern and titer were not associated with anti-thyroid antibody positivity.</p> <p>Conclusion</p> <p>Thyroid antibodies associated with chronic lymphocytic thyroiditis, ATG and ATPO, were detected significantly higher in ANA-positive children without a rheumatologic condition (30%) as compared to the general pediatric population (1.3 - 3.4%). ANA titer and pattern did not help predict the presence or absence of thyroid antibodies. Given the high frequency of thyroid antibodies and increased risk of developing hypothyroidism over time, routine evaluation of ATG and ATPO with thyroid function tests in ANA-positive children is recommended.</p

    CCL25-CCR9 interaction modulates ovarian cancer cell migration, metalloproteinase expression, and invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ovarian carcinoma (OvCa) is the most lethal gynecological malignancy among women and its poor prognosis is mainly due to metastasis. Chemokine receptor CCR9 is primarily expressed by a small subset of immune cells and its only natural ligand, CCL25, is largely expressed in the thymus, which involutes with age. Other than the thymus, CCL25 is expressed by the small bowel. Interactions between CCL25 and CCR9 have been implicated in leukocyte trafficking to the small bowel, a frequent metastatic site for OvCa cells. The current study shows OvCa tissue and cells significantly express CCR9, which interacts with CCL25 to support carcinoma cell migration and invasion.</p> <p>Methods</p> <p>RT-PCR and flow cytometry techniques were used to quantify the expression CCR9 by OvCa cells. OvCa tissue microarrays (TMA) was used to confirm CCR9 expression in clinical samples. The Aperio ScanScope scanning system was used to quantify immunohistochemical staining. Cell invasion and migration assays were performed using cell migration and matrigel invasion chambers. Matrix metalloproteinase (MMP) mRNAs were quantified by RT-PCR and active MMPs were quantified by ELISA.</p> <p>Results</p> <p>Our results show significantly (<it>p </it>< 0.001) higher expression of CCR9 by mucinous adenocarcinoma, papillary serous carcinoma, and endometriod ovarian carcinoma cases, than compared to non-neoplastic ovarian tissue. Furthermore, CCR9 expression was significantly elevated in OvCa cell lines (OVCAR-3 and CAOV-3) in comparison to normal adult ovarian epithelial cell mRNA. OvCa cells showed higher migratory and invasive potential towards chemotactic gradients of CCL25, which was inhibited by anti-CCR9 antibodies. Expression of collagenases (MMP-1, -8, and -13), gelatinases (MMP-2 and -9), and stromelysins (MMP-3, -10, and -11) by OvCa cells were modulated by CCL25 in a CCR9-dependent fashion.</p> <p>Conclusions</p> <p>These results demonstrate both biological significance and clinical relevance of CCL25 and CCR9 interactions in OvCa cell metastasis.</p

    Genotype-Dependent Tumor Regression in Marek’s Disease Mediated at the Level of Tumor Immunity

    Get PDF
    Marek’s disease (MD) of chickens is a unique natural model of Hodgkin’s and Non Hodgkin’s lymphomas in which the neoplastically-transformed cells over-express CD30 (CD30hi) antigen. All chicken genotypes can be infected with MD virus and develop microscopic lymphomas. From 21 days post infection (dpi) microscopic lymphomas regress in resistant chickens but, in contrast, they progress to gross lymphomas in susceptible chickens. Here we test our hypothesis that in resistant chickens at 21 dpi the tissue microenvironment is pro T-helper (Th)-1 and compatible with cytotoxic T lymphocyte (CTL) immunity but in susceptible lines it is pro Th-2 or pro T-regulatory (T-reg) and antagonistic to CTL immunity. We used the B2, non-MHC-associated, MD resistance/susceptibility system (line [L]61/line [L]72) and quantified the levels of key mRNAs that can be used to define Th-1 (IL-2, IL-12, IL-18, IFNγ), Th-2 (IL-4, IL-10) and T-reg (TGFβ, GPR-83, CTLA-4, SMAD-7) lymphocyte phenotypes. We measured gene expression in both whole tissues (represents tissue microenvironment and tumor microenvironment) and in the lymphoma lesions (tumor microenvironment) themselves. Gene ontology-based modeling of our results shows that the dominant phenotype in whole tissue as well as in microscopic lymphoma lesions, is pro T-reg in both L61 and L72 but a minor pro Th-1 and anti Th-2 tissue microenvironment exists in L61 whereas there is an anti Th-1 and pro Th-2 tissue microenvironment in L72. The tumor microenvironment per se is pro T-reg, anti Th-1 and pro Th-2 in both L61 and L72. Together our data suggests that the neoplastic transformation is essentially the same in both L61 and L72 and that resistance/susceptibility is mediated at the level of tumor immunity in the tissues

    Inhibition of Proliferation and Induction of Apoptosis in Multiple Myeloma Cell Lines by CD137 Ligand Signaling

    Get PDF
    BACKGROUND: Multiple myeloma (MM) is a malignancy of terminally-differentiated plasma cells, and the second most prevalent blood cancer. At present there is no cure for MM, and the average prognosis is only three to five years. Current treatments such as chemotherapy are able to prolong a patient's life but rarely prevent relapse of the disease. Even hematopoietic stem cell transplants and novel drug combinations are often not curative, underscoring the need for a continued search for novel therapeutics. CD137 and its ligand are members of the Tumor Necrosis Factor (TNF) receptor and TNF superfamilies, respectively. Since CD137 ligand cross-linking enhances proliferation and survival of healthy B cells we hypothesized that it would also act as a growth stimulus for B cell cancers. METHODOLOGY/PRINCIPAL FINDINGS: Proliferation and survival of B cell lymphoma cell lines were not affected or slightly enhanced by CD137 ligand agonists in vitro. But surprisingly, they had the opposite effects on MM cells, where CD137 ligand signals inhibited proliferation and induced cell death by apoptosis. Furthermore, secretion of the pro-inflammatory cytokines, IL-6 and IL-8 were also enhanced in MM but not in non-MM cell lines in response to CD137 ligand agonists. The secretion of these cytokines in response to CD137 ligand signaling was consistent with the observed activation of the classical NF-kappaB pathway. We hypothesize that the induction of this pathway results in activation-induced cell death, and that this is the underlying mechanism of CD137-induced MM cell death and growth arrest. CONCLUSIONS/SIGNIFICANCE: These data point to a hitherto unrecognized role of CD137 and CD137 ligand in MM cell biology. The selective inhibition of proliferation and induction of cell death in MM cells by CD137 ligand agonists may also warrant a closer evaluation of their therapeutic potential

    Epigenetic Modification of TLRs in Leukocytes Is Associated with Increased Susceptibility to Salmonella enteritidis in Chickens

    Get PDF
    Toll-like receptors (TLRs) signaling pathways are the first lines in defense against Salmonella enteritidis (S. enteritidis) infection but the molecular mechanism underlying susceptibility to S. enteritidis infection in chicken remains unclear. SPF chickens injected with S. enteritidis were partitioned into two groups, one consisted of those from Salmonella-susceptible chickens (died within 5 d after injection, n = 6), the other consisted of six Salmonella-resistant chickens that survived for 15 d after injection. The present study shows that the bacterial load in susceptible chickens was significantly higher than that in resistant chickens and TLR4, TLR2-1 and TLR21 expression was strongly diminished in the leukocytes of susceptible chickens compared with those of resistant chickens. The induction of expression of pro-inflammatory cytokine genes, IL-6 and IFN-β, was greatly enhanced in the resistant but not in susceptible chickens. Contrasting with the reduced expression of TLR genes, those of the zinc finger protein 493 (ZNF493) gene and Toll-interacting protein (TOLLIP) gene were enhanced in the susceptible chickens. Finally, the expression of TLR4 in peripheral blood mononuclear cells (PBMCs) infected in vitro with S. enteritidis increased significantly as a result of treatment with 5-Aza-2-deoxycytidine (5-Aza-dc) while either 5-Aza-dc or trichostatin A was effective in up-regulating the expression of TLR21 and TLR2-1. DNA methylation, in the predicted promoter region of TLR4 and TLR21 genes, and an exonic CpG island of the TLR2-1 gene was significantly higher in the susceptible chickens than in resistant chickens. Taken together, the results demonstrate that ZNF493-related epigenetic modification in leukocytes probably accounts for increased susceptibility to S. enteritidis in chickens by diminishing the expression and response of TLR4, TLR21 and TLR2-1

    Highly Active Microbial Phosphoantigen Induces Rapid yet Sustained MEK/Erk- and PI-3K/Akt-Mediated Signal Transduction in Anti-Tumor Human γδ T-Cells

    Get PDF
    BACKGROUND: The unique responsiveness of Vgamma9Vdelta2 T-cells, the major gammadelta subset of human peripheral blood, to non-peptidic prenyl pyrophosphate antigens constitutes the basis of current gammadelta T-cell-based cancer immunotherapy strategies. However, the molecular mechanisms responsible for phosphoantigen-mediated activation of human gammadelta T-cells remain unclear. In particular, previous reports have described a very slow kinetics of activation of T-cell receptor (TCR)-associated signal transduction pathways by isopentenyl pyrophosphate and bromohydrin pyrophosphate, seemingly incompatible with direct binding of these antigens to the Vgamma9Vdelta2 TCR. Here we have studied the most potent natural phosphoantigen yet identified, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), produced by Eubacteria and Protozoa, and examined its gammadelta T-cell activation and anti-tumor properties. METHODOLOGY/PRINCIPAL FINDINGS: We have performed a comparative study between HMB-PP and the anti-CD3epsilon monoclonal antibody OKT3, used as a reference inducer of bona fide TCR signaling, and followed multiple cellular and molecular gammadelta T-cell activation events. We show that HMB-PP activates MEK/Erk and PI-3K/Akt pathways as rapidly as OKT3, and induces an almost identical transcriptional profile in Vgamma9(+) T-cells. Moreover, MEK/Erk and PI-3K/Akt activities are indispensable for the cellular effects of HMB-PP, including gammadelta T-cell activation, proliferation and anti-tumor cytotoxicity, which are also abolished upon antibody blockade of the Vgamma9(+) TCR Surprisingly, HMB-PP treatment does not induce down-modulation of surface TCR levels, and thereby sustains gammadelta T-cell activation upon re-stimulation. This ultimately translates in potent human gammadelta T-cell anti-tumor function both in vitro and in vivo upon transplantation of human leukemia cells into lymphopenic mice, CONCLUSIONS/SIGNIFICANCE: The development of efficient cancer immunotherapy strategies critically depends on our capacity to maximize anti-tumor effector T-cell responses. By characterizing the intracellular mechanisms of HMB-PP-mediated activation of the highly cytotoxic Vgamma9(+) T-cell subset, our data strongly support the usage of this microbial antigen in novel cancer clinical trials
    corecore