4 research outputs found
Intermolecular interactions in binary mixtures of phosphonium based ionic liquid and propanoic acid
Thermophysical properties of binary systems containing trihexyltetradecylphosphonium chloride [P+14, 6, 6, 6] [Cl ̶ ] ionic liquid (IL) and propanoic acid (PA), have been investigated. Measurements of densities and speeds of sound have been made at p = 0.1 MPa and at varying temperatures ranging from 293.15 to 313.15 K. The computed excess properties which include excess molar volume , apparent molar volume ( , intermolecular free length (Lf), isentropic compressibility , apparent molar isentropic compressibility ( ) and deviation in isentropic compressibility have been computed from the experimental data of densities and speeds of sound. Based on the calculated derived properties, it is evident that the investigated IL and PA exhibit strong interactions across the entire mole fraction composition. Good correlation has been achieved with the Redlich-Kister equation
Intermolecular interactions in binary mixtures of phosphonium based ionic liquid and propanoic acid
753-760Thermophysical properties of binary systems containing trihexyltetradecylphosphonium chloride [P+14, 6, 6, 6] [Cl ̶ ] ionic liquid (IL) and propanoic acid (PA), have been investigated. Measurements of densities (ρ) and speeds of sound (u) have been made at p = 0.1 MPa and at varying temperatures ranging from 293.15 to 313.15 K. The computed excess properties which include excess molar volume (V), apparent molar volume (Vφ), intermolecular free length (Lf), isentropic compressibility (ks), apparent molar isentropic compressibility (Kφ) and deviation in isentropic compressibility (ks) have been computed from the experimental data of densities and speeds of sound. Based on the calculated derived properties, it is evident that the investigated IL and PA exhibit strong interactions across the entire mole fraction composition. Good correlation has been achieved with the Redlich-Kister equation
Deep eutectic solvents as sustainable solvents for industrial separation problems: A recent update
Deep eutectic solvents (DESs) are ionic liquid analogues that consist of Lewis or Brønsted acids and bases. These systems are characterized by a substantial decrease in melting points as compared to those of the neat constituents. Activity coefficients at infinite dilution of organic solutes is used as a screening tool for extracting solvents, an approach that is useful for identifying acceptable precursors and assessing separation performance in practical applications. This review assesses the effectiveness of DESs as solvents for chemical separations wherein the data is presented for the activity coefficients at infinite dilution for 33 solutes in different DESs at various temperatures. Additionally, the selectivities and capacities for various solute extraction problems are also appraised from the activity coefficients at infinite dilution at T = 323.15 K; capacity represents the solvent's ability to extract the component