42 research outputs found

    HSP70s in Breast Cancer: Promoters of Tumorigenesis and Potential Targets/Tools for Therapy

    No full text
    The high frequency of breast cancer worldwide and the high mortality among women with this malignancy are a serious challenge for modern medicine. A deeper understanding of the mechanisms of carcinogenesis and emergence of metastatic, therapy-resistant breast cancers would help development of novel approaches to better treatment of this disease. The review is dedicated to the role of members of the heat shock protein 70 subfamily (HSP70s or HSPA), mainly inducible HSP70, glucose-regulated protein 78 (GRP78 or HSPA5) and GRP75 (HSPA9 or mortalin), in the development and pathogenesis of breast cancer. Various HSP70-mediated cellular mechanisms and pathways which contribute to the oncogenic transformation of mammary gland epithelium are reviewed, as well as their role in the development of human breast carcinomas with invasive, metastatic traits along with the resistance to host immunity and conventional therapeutics. Additionally, intracellular and cell surface HSP70s are considered as potential targets for therapy or sensitization of breast cancer. We also discuss a clinical implication of Hsp70s and approaches to targeting breast cancer with gene vectors or nanoparticles downregulating HSP70s, natural or synthetic (small molecule) inhibitors of HSP70s, HSP70-binding antibodies, HSP70-derived peptides, and HSP70-based vaccines

    Molecular Chaperones in Cancer Stem Cells: Determinants of Stemness and Potential Targets for Antitumor Therapy

    No full text
    Cancer stem cells (CSCs) are a great challenge in the fight against cancer because these self-renewing tumorigenic cell fractions are thought to be responsible for metastasis dissemination and cases of tumor recurrence. In comparison with non-stem cancer cells, CSCs are known to be more resistant to chemotherapy, radiotherapy, and immunotherapy. Elucidation of mechanisms and factors that promote the emergence and existence of CSCs and their high resistance to cytotoxic treatments would help to develop effective CSC-targeting therapeutics. The present review is dedicated to the implication of molecular chaperones (protein regulators of polypeptide chain folding) in both the formation/maintenance of the CSC phenotype and cytoprotective machinery allowing CSCs to survive after drug or radiation exposure and evade immune attack. The major cellular chaperones, namely heat shock proteins (HSP90, HSP70, HSP40, HSP27), glucose-regulated proteins (GRP94, GRP78, GRP75), tumor necrosis factor receptor-associated protein 1 (TRAP1), peptidyl-prolyl isomerases, protein disulfide isomerases, calreticulin, and also a transcription heat shock factor 1 (HSF1) initiating HSP gene expression are here considered as determinants of the cancer cell stemness and potential targets for a therapeutic attack on CSCs. Various approaches and agents are discussed that may be used for inhibiting the chaperone-dependent development/manifestations of cancer cell stemness

    Heat shock protein 70 or heat shock protein 27 overexpressed in human endothelial cells during posthypoxic reoxygenation can protect from delayed apoptosis

    No full text
    Overexpression of heat shock protein (Hsp) 70 and Hsp27 in vivo was proclaimed as a potential tool in therapy of ischemia-reperfusion injury. However, it was so far not known whether these Hsps can beneficially act when increased in cells just at the stage of postischemic reperfusion. This issue was examined in a model of ischemia-reperfusion stress when cultures of endothelial cells (EC) from human umbilical vein were infected with virus-based vectors expressing Hsp70 or Hsp27, or Hsp56, or green fluorescent protein (GFP) and exposed to 20 hours of hypoxia followed by reoxygenation. The infection was performed either 10 hours before hypoxia or immediately after hypoxia, or at different time points of reoxygenation. Only low cell death was detected during hypoxia, but later, up to 40% of the treated cells died via caspase-dependent apoptosis between 6 and 12 hours of reoxygenation. The percentage of apoptotic cells was 1.6- to 3-fold greater in Hsp56- and GFP-infected EC than in Hsp70- or Hsp27-infected EC. The last 2 groups exhibited a lesser extent of procaspase-9 and procaspase-3 activation within 6–9 hours of reoxygenation. The cytoprotective effects of overexpressed Hsp70 and Hsp27 were observed not only in the case of infection before hypoxia but also when EC were infected at the start of reoxygenation or 1–2 hours later. An increase in the Hsp70 and Hsp27 levels in infected EC correlated well with their resistance to apoptosis under reoxygenation. These findings suggest that overexpression of Hsp70 or Hsp27, if it occurs in the involved cells at the early stage of postischemic reperfusion, can still be cytoprotective

    Overexpression of the Cochaperone CHIP Enhances Hsp70-Dependent Folding Activity in Mammalian Cells

    Get PDF
    CHIP is a cochaperone of Hsp70 that inhibits Hsp70-dependent refolding in vitro. However, the effect of altered expression of CHIP on the fate of unfolded proteins in mammalian cells has not been determined. Surprisingly, we found that overexpression of CHIP in fibroblasts increased the refolding of proteins after thermal denaturation. This effect was insensitive to geldanamycin, an Hsp90 inhibitor, and required the tetratricopeptide repeat motifs but not the U-box domain of CHIP. Inhibition of Hsp70 chaperone activity abolished the effects of CHIP on protein folding, indicating that the CHIP-mediated events were Hsp70 dependent. Hsp40 competitively inhibited the CHIP-dependent refolding, which is consistent with in vitro data indicating that these cofactors act on Hsp70 in the ATP-bound state and have opposing effects on Hsp70 ATPase activity. Consistent with these observations, CHIP overexpression did not alter protein folding in the setting of ATP depletion, when Hsp70 is in the ADP-bound state. Concomitant with its effects on refolding heat-denatured substrates, CHIP increased the fraction of nascent chains coimmunoprecipitating with Hsc70, but only when sufficient ATP was present to allow Hsp70 to cycle rapidly. Our data suggest that, consistent with in vitro studies, CHIP attenuates the Hsp70 cycle in living cells. The impact of this effect on the fate of unfolded proteins in cells, however, is different from what might be expected from the in vitro data. Rather than resulting in inhibited refolding, CHIP increases the folding capacity of Hsp70 in eukaryotic cells
    corecore