15 research outputs found

    Resonant conditions for Love wave guiding layer thickness

    Get PDF
    In this work we report a systematic investigation of polymer overlayer thickness in a Love wave device working at a fundamental frequency of 110MHz and at the 330MHz harmonic. At both frequencies we observe the initial reduction in insertion loss associated with a Love wave device. Significantly, we also observe a series of resonant conditions as the layer thickness is further increased. The separation of these resonances is attributed to an increase in thickness of half of the acoustic wavelength in the polymer

    Pulse mode operation of Love wave devices for biosensing applications

    Get PDF
    In this work we present a novel pulse mode Love wave biosensor that monitors both changes in amplitude and phase. A series of concentrations of 3350 molecular weight poly(ethylene glycol) (PEG) solutions are used as a calibration sequence for the pulse mode system using a network analyzer and high frequency oscilloscope. The operation of the pulse mode system is then compared to the continuous wave network analyzer by showing a sequence of deposition and removal of a model mass layer of palmitoyl-oleoyl-sn-glycerophosphocholine (POPC) vesicles. This experimental apparatus has the potential for making many hundreds of measurements a minute and so allowing the dynamics of fast interactions to be observed

    GMO detection using a bioluminescent real time reporter (BART) of loop mediated isothermal amplification (LAMP) suitable for field use

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is an increasing need for quantitative technologies suitable for molecular detection in a variety of settings for applications including food traceability and monitoring of genetically modified (GM) crops and their products through the food processing chain. Conventional molecular diagnostics utilising real-time polymerase chain reaction (RT-PCR) and fluorescence-based determination of amplification require temperature cycling and relatively complex optics. In contrast, isothermal amplification coupled to a bioluminescent output produced in real-time (BART) occurs at a constant temperature and only requires a simple light detection and integration device.</p> <p>Results</p> <p>Loop mediated isothermal amplification (LAMP) shows robustness to sample-derived inhibitors. Here we show the applicability of coupled LAMP and BART reactions (LAMP-BART) for determination of genetically modified (GM) maize target DNA at low levels of contamination (0.1-5.0% GM) using certified reference material, and compare this to RT-PCR. Results show that conventional DNA extraction methods developed for PCR may not be optimal for LAMP-BART quantification. Additionally, we demonstrate that LAMP is more tolerant to plant sample-derived inhibitors, and show this can be exploited to develop rapid extraction techniques suitable for simple field-based qualitative tests for GM status determination. We also assess the effect of total DNA assay load on LAMP-BART quantitation.</p> <p>Conclusions</p> <p>LAMP-BART is an effective and sensitive technique for GM detection with significant potential for quantification even at low levels of contamination and in samples derived from crops such as maize with a large genome size. The resilience of LAMP-BART to acidic polysaccharides makes it well suited to rapid sample preparation techniques and hence to both high throughput laboratory settings and to portable GM detection applications. The impact of the plant sample matrix and genome loading within a reaction must be controlled to ensure quantification at low target concentrations.</p

    Low concentration DNA extraction and recovery using a silica solid phase

    Get PDF
    DNA extraction from clinical samples is commonly achieved with a silica solid phase extraction column in the presence of a chaotrope. Versions of these protocols have been adapted for point of care (POC) diagnostic devices in miniaturized platforms, but commercial kits require a high amount of input DNA. Thus, when the input clinical sample contains less than 1 μg of total DNA, the target-specific DNA recovery from most of these protocols is low without supplementing the sample with exogenous carrier DNA. In fact, many clinical samples used in the development of POC diagnostics often exhibit target DNA concentrations as low as 3 ng/mL. With the broader goal of improving the yield and efficiency of nucleic acid-based POC devices for dilute samples, we investigated both DNA adsorption and recovery from silica particles by using 1 pg- 1 μg of DNA with a set of adsorption and elution buffers ranging in pH and chaotropic presence. In terms of adsorption, we found that low pH and the presence of chaotropic guanidinium thiocyanate (GuSCN) enhanced DNA-silica adsorption. When eluting with a standard low-salt, high-pH buffer, > 70% of DNA was unrecoverable, except when DNA was initially adsorbed with 5 M GuSCN at pH 5.2. Unrecovered DNA was either not initially adsorbed or irreversibly bound on the silica surface. Recovery was improved when eluting with 95°C formamide and 1 M NaOH, which suggested that DNA-silica-chaotrope interactions are dominated by hydrophobic interactions and hydrogen bonding. While heated formamide and NaOH are non-ideal elution buffers for practical POC devices, the salient results are important for engineering a set of optimized reagents that could maximize nucleic acid recovery from a microfluidic DNA-silica-chaotrope system
    corecore