24 research outputs found

    Evidence for interactions between homocysteine and genistein: insights into stroke risk and potential treatment

    Get PDF
    Elevated plasma homocysteine (2-amino-4- sulfanylbutanoic acid) level is a risk factor for stroke. Moreover, it has been suggested that high levels of homocysteine in the acute phase of an ischemic stroke can predict mortality, especially in stroke patients with the large-vessel atherosclerosis subtype. In clinical studies, supplementation with genistein(5, 7-dihydroxy-3- (4-hydroxyphenyl)-4H-1-benzopyran-4-one) decreased plasma homocysteine levels considerably. Therefore, genistein could be considered as a potential drug for prevention and/or treatment of stroke. However, the mechanism of the effect of genistein on homocysteine level remains to be elucidated. In this report, direct functional interactions between homocysteine and genistein are demonstrated in in vitro experimental systems for determination of methylenetetrahydrofolate reductase (MetF) and glutathione peroxidase(GPx) activities, reconstructed with purified compounds, and in a simple in vivo system, based on measurement of growth rate of Vibrio harveyi and Bacillus subtilis cultures. Results of molecular modelling indicated that homocysteine can directly interact with genistein. Therefore, genisteinmediated decrease in plasma levels of homocysteine, and alleviation of biochemical and physiological effects of one of these compounds by another, might be ascribed to formation of homocysteine-genistein complexes in which biological activities of these molecules are abolished or alleviated

    ATP and its N6-substituted analogues: parameterization, molecular dynamics simulation and conformational analysis

    Get PDF
    In this work we used a combination of classical molecular dynamics and simulated annealing techniques to shed more light on the conformational flexibility of 12 adenosine triphosphate (ATP) analogues in a water environment. We present simulations in AMBER force field for ATP and 12 published analogues [Shah et al. (1997) Proc Natl Acad Sci USA 94: 3565–3570]. The calculations were carried out using the generalized Born (GB) solvation model in the presence of the cation Mg2+. The ion was placed at a close distance (2 Å) from the charged oxygen atoms of the beta and gamma phosphate groups of the −3 negatively charged ATP analogue molecules. Analysis of the results revealed the distribution of inter-proton distances H8–H1′ and H8–H2′ versus the torsion angle ψ (C4–N9-C1′–O4′) for all conformations of ATP analogues. There are two gaps in the distribution of torsion angle ψ values: the first is between −30 and 30 degrees and is described by cis-conformation; and the second is between 90 and 175 degrees, which mostly covers a region of anti conformation. Our results compare favorably with results obtained in experimental assays [Jiang and Mao (2002) Polyhedron 21:435–438]

    The influence of modification at position 2 on the side-chain conformation in oxytocin analogs

    No full text
    The nonapeptide oxytocin (OT) is used in medicine to help begin and/or continue childbirth. Its analogs can be also used to control bleeding following fetus delivery. The main function of oxytocin is to stimulate contraction of uterus smooth muscle and the smooth muscle of mammary glands, thus regulating lactation. This paper describes theoretical simulations of the distribution of the torsional angles χ1 in the non-standard methylated phenylalanine residues of three oxytocin analogs: [(Phe)2o-Me]OT, [(Phe)2m-Me]OT, [(Phe)2p-Me]OT. The conformations of the oxytocin analogs were studied both in vacuum and in solution. We found some correlations between the biological activity of the considered peptides and the side-chain conformations of amino-acid residues 2 and 8

    Molecular docking-based test for affinities of two ligands toward vasopressin and oxytocin receptors.

    No full text
    Molecular docking simulations are now fast developing area of research. In this work we describe an effective procedure of preparation of the receptor-ligand complexes. The amino-acid residues involved in ligand binding were identified and described
    corecore