20,366 research outputs found

    Data Analytics in Higher Education: Key Concerns and Open Questions

    Get PDF
    “Big Data” and data analytics affect all of us. Data collection, analysis, and use on a large scale is an important and growing part of commerce, governance, communication, law enforcement, security, finance, medicine, and research. And the theme of this symposium, “Individual and Informational Privacy in the Age of Big Data,” is expansive; we could have long and fruitful discussions about practices, laws, and concerns in any of these domains. But a big part of the audience for this symposium is students and faculty in higher education institutions (HEIs), and the subject of this paper is data analytics in our own backyards. Higher education learning analytics (LA) is something that most of us involved in this symposium are familiar with. Students have encountered LA in their courses, in their interactions with their law school or with their undergraduate institutions, instructors use systems that collect information about their students, and administrators use information to help understand and steer their institutions. More importantly, though, data analytics in higher education is something that those of us participating in the symposium can actually control. Students can put pressure on administrators, and faculty often participate in university governance. Moreover, the systems in place in HEIs are more easily comprehensible to many of us because we work with them on a day-to-day basis. Students use systems as part of their course work, in their residences, in their libraries, and elsewhere. Faculty deploy course management systems (CMS) such as Desire2Learn, Moodle, Blackboard, and Canvas to structure their courses, and administrators use information gleaned from analytics systems to make operational decisions. If we (the participants in the symposium) indeed care about Individual and Informational Privacy in the Age of Big Data, the topic of this paper is a pretty good place to hone our thinking and put into practice our ideas

    The Geneticists\u27 Approach to Bilski

    Get PDF

    Nondegeneracy and Stability of Antiperiodic Bound States for Fractional Nonlinear Schr\"odinger Equations

    Full text link
    We consider the existence and stability of real-valued, spatially antiperiodic standing wave solutions to a family of nonlinear Schr\"odinger equations with fractional dispersion and power-law nonlinearity. As a key technical result, we demonstrate that the associated linearized operator is nondegenerate when restricted to antiperiodic perturbations, i.e. that its kernel is generated by the translational and gauge symmetries of the governing evolution equation. In the process, we provide a characterization of the antiperiodic ground state eigenfunctions for linear fractional Schr\"odinger operators on R\mathbb{R} with real-valued, periodic potentials as well as a Sturm-Liouville type oscillation theory for the higher antiperiodic eigenfunctions.Comment: 46 pages, 2 figure

    Student Privacy in Learning Analytics: An Information Ethics Perspective

    Get PDF
    In recent years, educational institutions have started using the tools of commercial data analytics in higher education. By gathering information about students as they navigate campus information systems, learning analytics “uses analytic techniques to help target instructional, curricular, and support resources” to examine student learning behaviors and change students’ learning environments. As a result, the information educators and educational institutions have at their disposal is no longer demarcated by course content and assessments, and old boundaries between information used for assessment and information about how students live and work are blurring. Our goal in this paper is to provide a systematic discussion of the ways in which privacy and learning analytics conflict and to provide a framework for understanding those conflicts. We argue that there are five crucial issues about student privacy that we must address in order to ensure that whatever the laudable goals and gains of learning analytics, they are commensurate with respecting students’ privacy and associated rights, including (but not limited to) autonomy interests. First, we argue that we must distinguish among different entities with respect to whom students have, or lack, privacy. Second, we argue that we need clear criteria for what information may justifiably be collected in the name of learning analytics. Third, we need to address whether purported consequences of learning analytics (e.g., better learning outcomes) are justified and what the distributions of those consequences are. Fourth, we argue that regardless of how robust the benefits of learning analytics turn out to be, students have important autonomy interests in how information about them is collected. Finally, we argue that it is an open question whether the goods that justify higher education are advanced by learning analytics, or whether collection of information actually runs counter to those goods
    • …
    corecore