3,546 research outputs found

    PMH30 EVALUATION OF SELECTIVE SEROTONIN REPUTAKE INHIBITOR STEP CARE PROGRAM ON MEDICATION COSTS AND UTILIZATION

    Get PDF

    PHP17 IMPACT OF CO-PAY DIFFERENTIAL ON GENERIC PRESCRIPTIONS FILLED THROUGH 90-DAY RETAIL CHANNEL

    Get PDF

    Five-year outcomes of western mental health training for Traditional Chinese Medicine Practitioners

    Get PDF
    published_or_final_versio

    PMH29 ATTENTION DEFICIT HYPERACTIVITY DISORDER MEDICATION CLINICAL PRIOR AUTHORIZATION PROGRAM'S IMPACT ON PRESCRIPTION DRUG UTILIZATION AND COSTS

    Get PDF

    MD3 CHANGES IN PRESCRIPTION USE AND OUT-OF POCKET COSTSAMONG MEDICARE ELIGIBLE ADULTS, 2005-2006

    Get PDF

    A dynamic and continuous allowances allocation methodology for the prevention of carbon leakage: Emission control coefficients

    Full text link
    © 2018 Elsevier Ltd Carbon leakage has become the core issue of emission trading systems. Using data from Hubei Province, this paper identifies the drawbacks of the prevailing methods for preventing carbon leakage and proposes a new methodology to overcome them, namely, Emission Control Coefficients. In contrast to the common tiered structure method, the Emission Control Coefficients generate a dynamic and continuous emission control coefficient for each industry which will improve the effectiveness and fairness of allowance allocation, set aside sufficient time for the low carbon transformation of industries, and balance the needs to protect competitiveness and decarbonize and are particularly suitable for the emission trading systems of developing counties. This paper makes three main academic contributions: Firstly, it proposes a new indicator, the abatement potential for more effective determining allowance allocation than the prevailing method. Secondly, it better distinguishes industrial differences. Thirdly, it can better respond to the problem of excess allowances that is due to technological advances and trade pattern changes

    Enhancement of anticancer efficacy using modified lipophilic nanoparticle drug encapsulation

    Get PDF
    Development of anticancer drugs is challenging. Indeed, much research effort has been spent in the development of new drugs to improve clinical outcomes with minimal toxicity. We have previously reported that a formulation of lipid gold porphyrin nanoparticles reduced systemic drug toxicity when compared with free gold porphyrin. In this study, we investigated the delivery and treatment efficiency of PEG surface-modified lipid nanoparticles as a carrier platform. We encapsulated antitumor drugs into PEG-modified lipid nanoparticles and these were characterized by size, zeta potential, and encapsulation efficiency. The delivery efficiency into tumor tissue was evaluated using a biodistribution study. To evaluate antitumor efficacy, gold porphyrin or camptothecin (a DNA topoisomerase I inhibitor) were encapsulated and compared using an in vivo neuroblastoma (N2A) model. We showed that drug encapsulation into PEG-modified lipid nanoparticles enhanced the preferential uptake in tumor tissue. Furthermore, higher tumor killing efficiency was observed in response to treatment with PEG-modified lipid nanoparticles encapsulating gold porphyrin or camptothecin when compared with free gold porphyrin or free camptothecin. The in vivo antitumor effect was further confirmed by study of tumor inhibition and positive apoptosis activity. Surface modification of lipophilic nanoparticles with PEG increased the efficiency of drug delivery into tumor tissue and subsequently more effective antitumor activity. This specific design of a chemotherapeutic agent using nanotechnology is important in the development of a safe and effective drug in cancer therapy.published_or_final_versio

    Antibody-Dependent Cell-Mediated Cytotoxicity Epitopes on the Hemagglutinin Head Region of Pandemic H1N1 Influenza Virus Play Detrimental Roles in H1N1-Infected Mice

    Get PDF
    Engaging the antibody-dependent cell-mediated cytotoxicity (ADCC) for killing of virus-infected cells and secretion of antiviral cytokines and chemokines was incorporated as one of the important features in the design of universal influenza vaccines. However, investigation of the ADCC epitopes on the highly immunogenic influenza hemagglutinin (HA) head region has been rarely reported. In this study, we determined the ADCC and antiviral activities of two putative ADCC epitopes, designated E1 and E2, on the HA head of a pandemic H1N1 influenza virus in vitro and in a lethal mouse model. Our data demonstrated that sera from the E1-vaccinated mice could induce high ADCC activities. Importantly, the induction of ADCC response modestly decreased viral load in the lungs of H1N1-infected mice. However, the elevated ADCC significantly increased mouse alveolar damage and mortality than that of the PBS-vaccinated group (P < 0.0001). The phenotype was potentially due to an exaggerated inflammatory cell infiltration triggered by ADCC, as an upregulated release of cytotoxic granules (perforin) was observed in the lung tissue of E1-vaccinated mice after H1N1 influenza virus challenge. Overall, our data suggested that ADCC elicited by certain domains of HA head region might have a detrimental rather than protective effect during influenza virus infection. Thus, future design of universal influenza vaccine shall strike a balance between the induction of protective immunity and potential side effects of ADCC.published_or_final_versio
    • …
    corecore