53 research outputs found

    ATAD5 promotes replication restart by regulating RAD51 and PCNA in response to replication stress

    Get PDF
    Maintaining stability of replication forks is important for genomic integrity. However, it is not clear how replisome proteins contribute to fork stability under replication stress. Here, we report that ATAD5, a PCNA unloader, plays multiple functions at stalled forks including promoting its restart. ATAD5 depletion increases genomic instability upon hydroxyurea treatment in cultured cells and mice. ATAD5 recruits RAD51 to stalled forks in an ATR kinase-dependent manner by hydroxyurea-enhanced protein-protein interactions and timely removes PCNA from stalled forks for RAD51 recruitment. Consistent with the role of RAD51 in fork regression, ATAD5 depletion inhibits slowdown of fork progression and native 5-bromo-2??-deoxyuridine signal induced by hydroxyurea. Single-molecule FRET showed that PCNA itself acts as a mechanical barrier to fork regression. Consequently, DNA breaks required for fork restart are reduced by ATAD5 depletion. Collectively, our results suggest an important role of ATAD5 in maintaining genome integrity during replication stress

    A uniform procedure for the purification of CDK7/CycH/MAT1, CDK8/CycC and CDK9/CycT1

    Get PDF
    We have established a uniform procedure for the expression and purification of the cyclin-dependent kinases CDK7/CycH/MAT1, CDK8/CycC and CDK9/CycT1. We attach a His(6)-tag to one of the subunits of each complex and then co-express it together with the other subunits in Spodoptera frugiperda insect cells. The CDK complexes are subsequently purified by Ni(2+)-NTA and Mono S chromatography. This approach generates large amounts of active recombinant kinases that are devoid of contaminating kinase activities. Importantly, the properties of these recombinant kinases are similar to their natural counterparts (Pinhero et al. 2004, Eur J Biochem 271:1004-14). Our protocol provides a novel systematic approach for the purification of these three (and possibly other) recombinant CDKs

    DNA-PK-Dependent RPA2 Hyperphosphorylation Facilitates DNA Repair and Suppresses Sister Chromatid Exchange

    Get PDF
    Hyperphosphorylation of RPA2 at serine 4 and serine 8 (S4, S8) has been used as a marker for activation of the DNA damage response. What types of DNA lesions cause RPA2 hyperphosphorylation, which kinase(s) are responsible for them, and what is the biological outcome of these phosphorylations, however, have not been fully investigated. In this study we demonstrate that RPA2 hyperphosphorylation occurs primarily in response to genotoxic stresses that cause high levels of DNA double-strand breaks (DSBs) and that the DNA-dependent protein kinase complex (DNA-PK) is responsible for the modifications in vivo. Alteration of S4, S8 of RPA2 to alanines, which prevent phosphorylations at these sites, caused increased mitotic entry with concomitant increases in RAD51 foci and homologous recombination. Taken together, our results demonstrate that RPA2 hyperphosphorylation by DNA-PK in response to DSBs blocks unscheduled homologous recombination and delays mitotic entry. This pathway thus permits cells to repair DNA damage properly and increase cell viability

    Sex- and age-dependent association of SLC11A1 polymorphisms with tuberculosis in Chinese: a case control study

    Get PDF
    BACKGROUND: Host genetic factors are important determinants in tuberculosis (TB). The SLC11A1 (or NRAMP1) gene has been studied extensively for genetic association with TB, but with inconsistent findings. In addition, no study has yet looked into the effect of sex and age on the relationship between SLC11A1 polymorphisms and TB. METHODS: A case-control study was conducted. In total, 278 pulmonary TB patients and 282 sex- and age-matched controls without TB were recruited. All subjects were ethnic Chinese. On the basis of linkage disequilibrium pattern, three genetic markers from SLC11A1 and one from the nearby IL8RB locus were selected and examined for association with TB susceptibility. These markers were genotyped using single strand conformation polymorphism analysis or fragment analysis of amplified products. RESULTS: Statistically significant differences in allele (P = 0.0165, OR = 1.51) and genotype (P = 0.0163, OR = 1.59) frequencies of the linked markers SLC6a/b (classically called D543N and 3'UTR) of the SLC11A1 locus were found between patients and controls. With stratification by sex, positive associations were identified in the female group for both allele (P = 0.0049, OR = 2.54) and genotype (P = 0.0075, OR = 2.74) frequencies. With stratification by age, positive associations were demonstrated in the young age group (age ≤65 years) for both allele (P = 0.0047, OR = 2.52) and genotype (P = 0.0031, OR = 2.92) frequencies. All positive findings remained significant even after correction for multiple comparisons. No significant differences were noted in either the male group or the older age group. No significant differences were found for the other markers (one SLC11A1 marker and one IL8RB marker) either. CONCLUSION: This study confirmed the association between SLC11A1 and TB susceptibility and demonstrated for the first time that the association was restricted to females and the young age group

    Metabolism before, during and after anaesthesia in colic and healthy horses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many colic horses are compromised due to the disease state and from hours of starvation and sometimes long trailer rides. This could influence their muscle energy reserves and affect the horses' ability to recover. The principal aim was to follow metabolic parameter before, during, and up to 7 days after anaesthesia in healthy horses and in horses undergoing abdominal surgery due to colic.</p> <p>Methods</p> <p>20 healthy horses given anaesthesia alone and 20 colic horses subjected to emergency abdominal surgery were anaesthetised for a mean of 228 minutes and 183 minutes respectively. Blood for analysis of haematology, electrolytes, cortisol, creatine kinase (CK), free fatty acids (FFA), glycerol, glucose and lactate was sampled before, during, and up to 7 days after anaesthesia. Arterial and venous blood gases were obtained before, during and up to 8 hours after recovery. Gluteal muscle biopsy specimens for biochemical analysis of muscle metabolites were obtained at start and end of anaesthesia and 1 h and 1 day after recovery.</p> <p>Results</p> <p>Plasma cortisol, FFA, glycerol, glucose, lactate and CK were elevated and serum phosphate and potassium were lower in colic horses before anaesthesia. Muscle adenosine triphosphate (ATP) content was low in several colic horses. Anaesthesia and surgery resulted in a decrease in plasma FFA and glycerol in colic horses whereas levels increased in healthy horses. During anaesthesia muscle and plasma lactate and plasma phosphate increased in both groups. In the colic horses plasma lactate increased further after recovery. Plasma FFA and glycerol increased 8 h after standing in the colic horses. In both groups, plasma concentrations of CK increased and serum phosphate decreased post-anaesthesia. On Day 7 most parameters were not different between groups. Colic horses lost on average 8% of their initial weight. Eleven colic horses completed the study.</p> <p>Conclusion</p> <p>Colic horses entered anaesthesia with altered metabolism and in a negative oxygen balance. Muscle oxygenation was insufficient during anaesthesia in both groups, although to a lesser extent in the healthy horses. The post-anaesthetic period was associated with increased lipolysis and weight loss in the colic horses, indicating a negative energy balance during the first week post-operatively.</p
    corecore