170 research outputs found

    Metronidazole-induced encephalopathy in a patient with infectious colitis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Encephalopathy is a rare disease caused by adverse effects of antibiotic drugs such as metronidazole. The incidence of metronidazole-induced encephalopathy is unknown, although several previous studies have addressed metronidazole neurotoxicity. Here, we report the case of a patient with reversible cerebellar dysfunction on magnetic resonance imaging, induced by prolonged administration of metronidazole for the treatment of infectious colitis.</p> <p>Case presentation</p> <p>A 71-year-old Asian man, admitted to our hospital with hematochezia, underwent Hartmann's operation for the treatment of colorectal cancer three years ago. He was diagnosed with an infectious colitis by colonoscopy. After taking metronidazole, he showed drowsiness and slow response to verbal commands. Brain magnetic resonance imaging showed obvious bilateral symmetric hyperintensities within his dentate nucleus, tectal region of the cerebellum, and splenium of corpus callosum in T2-weighted images and fluid attenuated inversion recovery images. Our patient's clinical presentation and magnetic resonance images were thought to be most consistent with metronidazole toxicity. Therefore, we discontinued metronidazole, and his cerebellar syndrome resolved. Follow-up magnetic resonance imaging examinations showed complete resolution of previously noted signal changes.</p> <p>Conclusion</p> <p>Metronidazole may produce neurologic side effects such as cerebellar syndrome, and encephalopathy in rare cases. We show that metronidazole-induced encephalopathy can be reversed after cessation of the drug. Consequently, careful consideration should be given to patients presenting with complaints of neurologic disorder after the initiation of metronidazole therapy.</p

    Hepatitis B and C virus prevalence in a rural area of South Korea: the role of acupuncture

    Get PDF
    A cross-sectional study evaluated the prevalence of and the risk factors for hepatitis C and B viruses among 700 adults above the age of 40 years in a rural area of South Korea. Seropositivity for hepatitis C virus antibody (11.0%, 95% confidence interval: 8.7–13.6) was higher than that for hepatitis B surface antigen (4.4%, 95% confidence interval: 3.0–6.2). Anti-hepatitis C virus seropositivity was associated with a history of repeated acupuncture (odds ratio=2.1, 95% confidence interval: 1.1–4.0), and blood transfusion (odds ratio=5.5, 95% confidence interval: 1.6–19.3) before 1992 when hepatitis C virus screening in blood donors became mandatory. Hepatitis C virus 2a was the most prevalent genotype, followed by 1b. Hepatitis C virus risk attributable to acupuncture was 38% (9% for men and 55% for women). Safer acupuncture practice has become a priority for hepatitis C virus prevention in South Korea

    Fluorescence Modified Chitosan-Coated Magnetic Nanoparticles for High-Efficient Cellular Imaging

    Get PDF
    Labeling of cells with nanoparticles for living detection is of interest to various biomedical applications. In this study, novel fluorescent/magnetic nanoparticles were prepared and used in high-efficient cellular imaging. The nanoparticles coated with the modified chitosan possessed a magnetic oxide core and a covalently attached fluorescent dye. We evaluated the feasibility and efficiency in labeling cancer cells (SMMC-7721) with the nanoparticles. The nanoparticles exhibited a high affinity to cells, which was demonstrated by flow cytometry and magnetic resonance imaging. The results showed that cell-labeling efficiency of the nanoparticles was dependent on the incubation time and nanoparticles’ concentration. The minimum detected number of labeled cells was around 104by using a clinical 1.5-T MRI imager. Fluorescence and transmission electron microscopy instruments were used to monitor the localization patterns of the magnetic nanoparticles in cells. These new magneto-fluorescent nanoagents have demonstrated the potential for future medical use

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself
    corecore