43 research outputs found

    Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention

    Get PDF
    Glycogen synthase kinase-3 (GSK-3) is well documented to participate in a complex array of critical cellular processes. It was initially identified in rat skeletal muscle as a serine/threonine kinase that phosphorylated and inactivated glycogen synthase. This versatile protein is involved in numerous signaling pathways that influence metabolism, embryogenesis, differentiation, migration, cell cycle progression and survival. Recently, GSK-3 has been implicated in leukemia stem cell pathophysiology and may be an appropriate target for its eradication. In this review, we will discuss the roles that GSK-3 plays in hematopoiesis and leukemogenesis as how this pivotal kinase can interact with multiple signaling pathways such as: Wnt/β-catenin, phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt/mammalian target of rapamycin (mTOR), Ras/Raf/MEK/extracellular signal-regulated kinase (ERK), Notch and others. Moreover, we will discuss how targeting GSK-3 and these other pathways can improve leukemia therapy and may overcome therapeutic resistance. In summary, GSK-3 is a crucial regulatory kinase interacting with multiple pathways to control various physiological processes, as well as leukemia stem cells, leukemia progression and therapeutic resistance. GSK-3 and Wnt are clearly intriguing therapeutic targets

    Down-Regulation of GEP100 Causes Increase in E-Cadherin Levels and Inhibits Pancreatic Cancer Cell Invasion

    Get PDF
    AIMS: Invasion and metastasis are major reasons for pancreatic cancer death and identifying signaling molecules that are specifically used in tumor invasion is of great significance. The purpose of this study was to elucidate the role of GEP100 in pancreatic cancer cell invasion and metastasis and the corresponding molecular mechanism. METHODS: Stable cell lines with GEP100 knocked-down were established by transfecting GEP100 shRNA vector into PaTu8988 cells and selected by puromycin. qRT-PCR and Western blot were performed to detect gene expression. Matrigel-invasion assay was used to detect cancer cell invasion in vitro. Liver metastasis in vivo was determined by splenic injection of indicated cell lines followed by spleen resection. Immunofluorescence study was used to detect the intracellular localization of E-cadherin. RESULTS: We found that the expression level of GEP100 protein was closely related to the invasive ability of a panel of 6 different human pancreatic cancer cell lines. Down-regulation of GEP100 in PaTu8988 cells significantly decreased invasive activity by Matrigel invasion assay, without affecting migration, invasion and viability. The inhibited invasive activity was rescued by over-expression of GEP100 cDNA. In vivo study showed that liver metastasis was significantly decreased in the PaTu8988 cells with GEP100 stably knocked-down. In addition, an epithelial-like morphological change, mimicking a mesenchymal to epithelial transition (MET) was induced by GEP100 down-regulation. The expression of E-cadherin protein was increased 2-3 folds accompanied by its redistribution to the cell-cell contacts, while no obvious changes were observed for E-cadherin mRNA. Unexpectedly, the mRNA of Slug was increased by GEP100 knock-down. CONCLUSION: These findings provided important evidence that GEP100 plays a significant role in pancreatic cancer invasion through regulating the expression of E-cadherin and the process of MET, indicating the possibility of it becoming a potential therapeutic target against pancreatic cancer

    Critical Role of the Rb Family in Myoblast Survival and Fusion

    Get PDF
    The tumor suppressor Rb is thought to control cell proliferation, survival and differentiation. We recently showed that differentiating Rb-deficient mouse myoblasts can fuse to form short myotubes that quickly collapse through a mechanism involving autophagy, and that autophagy inhibitors or hypoxia could rescue the defect leading to long, twitching myotubes. Here we determined the contribution of pRb relatives, p107 and p130, to this process. We show that chronic or acute inactivation of Rb plus p107 or p130 increased myoblast cell death and reduced myotube formation relative to Rb loss alone. Treatment with autophagy antagonists or hypoxia extended survival of double-knockout myotubes, which appeared indistinguishable from control fibers. In contrast, triple mutations in Rb, p107 and p130, led to substantial increase in myoblast death and to elongated bi-nuclear myocytes, which seem to derive from nuclear duplication, as opposed to cell fusion. Under hypoxia, some rare, abnormally thin triple knockout myotubes survived and twitched. Thus, mutation of p107 or p130 reduces survival of Rb-deficient myoblasts during differentiation but does not preclude myoblast fusion or necessitate myotube degeneration, whereas combined inactivation of the entire Rb family produces a distinct phenotype, with drastically impaired myoblast fusion and survival

    Muscling in on limb regeneration

    No full text

    MAFB enhances oncogenic Notch signaling in T cell acute lymphoblastic leukemia

    No full text
    The transcription factor MAFB epigenetically facilitates Notch1-induced T cell leukemia.</jats:p
    corecore