12 research outputs found

    Hydrothermal deposition of CdS on vertically aligned ZnO nanorods for photoelectrochemical solar cell application

    Get PDF
    CdS/ZnO nanorods composite nanofilms were successfully synthesized via hydrothermal method on indium doped tin oxide glass substrates. Sequentially deposited CdS formed cauliflower like nanostructures on vertically aligned ZnO nanorods. The morphological, compositional, structural and optical properties of the films were characterized by field emission scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction and ultraviolet–visible spectroscopy. Photoelectrochemical conversion efficiencies were evaluated by photocurrent measurements in a mixture of Na2S and Na2SO3 akaline aqueous solution. The amount of deposit, as well as the diameter and crystallinity of the CdS cauliflower were found to increase with growth time. CdS/ZnO nanorods composite exhibited greater photocurrent response than ZnO nanorod arrays. Besides, the composite film with 90 min of growth duration displayed the highest photocurrent density which is nearly four times greater than plain ZnO nanorods under the illumination of halogen light. The result exhibited remarkable photoconversion efficiency (η) of 1.92 %

    The Evolution of Educational Technology in Veterinary Anatomy Education.

    No full text
    "All learning is in the learner, not the teacher." Plato was right. The adage has passed the test of time and is still true in an era where technology accompanies us in not only professional but also recreational life every day, everywhere. On the other hand, the learner has evolved and so have the sources being used to satisfy curiosity and learning. It therefore appears intuitive to embrace these technological advances to bring knowledge to our pupils with the aim to facilitate learning and improve performance. It must be clear that these technologies are not intended to replace but rather consolidate knowledge partly acquired during more conventional teaching of anatomy. Veterinary medicine is no outlier. Educating students to the complexity of anatomy in multiple species requires that three-dimensional concepts be taught and understood accurately if appropriate treatment is to be set in place thereafter. Veterinary anatomy education has up to recently walked diligently in the footsteps of John Hunter's medical teaching using specimens, textbooks, and drawings. The discipline has yet to embrace fully the benefits of advancement being made in technology for the benefit of its learners. Three-dimensional representation of anatomy is undeniably a logical and correct way to teach whether it is through the demonstration of cadaveric specimen or alternate reality using smartphones, tablets, headsets or other digital media. Here we review some key aspects of the evolution of educational technology in veterinary anatomy
    corecore