61 research outputs found

    New Analytical Methods for the Surface/ Interface and the Micro-Structures in Advanced Nanocomposite Materials by Synchrotron Radiation

    Get PDF
    Analytical methods of surface/interface structure and micro-structure in advanced nanocomposite materials by using the synchrotron radiation are introduced. Recent results obtained by the energy-tunable and highly collimated brilliant X-rays, in-situ wide angle/small angle X-ray diffraction with high accuracy are reviewed. It is shown that small angle X-ray scattering is one of the best methods to characterize nanoparticle dispersibility, filler aggregate/agglomerate structures and in-situ observation of hierarchical structure deformation in filled rubber under cyclic stretch. Grazing Incidence(small and wide angle) X-ray Scattering are powerful to analyze the sintering process of metal nanoparticle by in-situ observation as well as the orientation of polymer molecules and crystalline orientation at very thin surface layer (ca 7nm) of polymer film. While the interaction and conformation of adsorbed molecule at interface can be investigated by using high energy X-ray XPS with Enough deep position (ca 9 micron m).Received: 11 October 2010; Revised: 13 December 2010; Accepted: 23 December 201

    Paramagnetic Faraday rotation with spin-polarized ytterbium atoms

    Full text link
    We report observation of the paramagnetic Faraday rotation of spin-polarized ytterbium (Yb) atoms. As the atomic samples, we used an atomic beam, released atoms from a magneto-optical trap (MOT), and trapped atoms in a far-off-resonant trap (FORT). Since Yb is diamagnetic and includes a spin-1/2 isotope, it is an ideal sample for the spin physics, such as quantum non-demolition measurement of spin (spin QND), for example. From the results of the rotation angle, we confirmed that the atoms were almost perfectly polarized.Comment: 8 pages, 20 figure

    Interplay of Mott Transition and Ferromagnetism in the Orbitally Degenerate Hubbard Model

    Full text link
    A slave boson representation for the degenerate Hubbard model is introduced. The location of the metal to insulator transition that occurs at commensurate densities is shown to depend weakly on the band degeneracy M. The relative weights of the Hubbard sub-bands depend strongly on M, as well as the magnetic properties. It is also shown that a sizable Hund's rule coupling is required in order to have a ferromagnetic instability appearing. The metal to insulator transition driven by an increase in temperature is a strong function of it.Comment: 5 pages, revtex, 5 postscript figures, submitted to Phys. Rev.

    The Finite Temperature Mott Transition in the Hubbard Model in Infinite Dimensions

    Full text link
    We study the second order finite temperature Mott transition point in the fully frustrated Hubbard model at half filling, within Dynamical Mean Field Theory. Using quantum Monte Carlo simulations we show the existence of a finite temperature second order critical point by explicitly demonstrating the existence of a divergent susceptibility as well as by finding coexistence in the low temperature phase. We determine the location of the finite temperature Mott critical point in the (U,T) plane. Our study verifies and quantifies a scenario for the Mott transition proposed in earlier studies (Reviews of Modern Physics 68, 13, 1996) of this problem.Comment: 4 RevTex pages, uses epsf, 2 figure

    Optical Conductivity in Mott-Hubbard Systems

    Full text link
    We study the transfer of spectral weight in the optical spectra of a strongly correlated electron system as a function of temperature and interaction strength. Within a dynamical mean field theory of the Hubbard model that becomes exact in the limit of large lattice coordination, we predict an anomalous enhancement of spectral weight as a function of temperature in the correlated metallic state and report on experimental measurements which agree with this prediction in V2O3V_2O_3. We argue that the optical conductivity anomalies in the metal are connected to the proximity to a crossover region in the phase diagram of the model.Comment: 12 pages and 4 figures, to appear in Phys. Rev. Lett., v 75, p 105 (1995

    Stabilization and pumping of giant vortices in dilute Bose-Einstein condensates

    Full text link
    Recently, it was shown that giant vortices with arbitrarily large quantum numbers can possibly be created in dilute Bose-Einstein condensates by cyclically pumping vorticity into the condensate. However, multiply quantized vortices are typically dynamically unstable in harmonically trapped nonrotated condensates, which poses a serious challenge to the vortex pump procedure. In this theoretical study, we investigate how the giant vortices can be stabilized by the application of a Gaussian potential peak along the vortex core. We find that achieving dynamical stability is feasible up to high quantum numbers. To demonstrate the efficiency of the stabilization method, we simulate the adiabatic creation of an unsplit 20-quantum vortex with the vortex pump.Comment: 8 pages, 6 figures; to be published in J. Low Temp. Phys., online publication available at http://dx.doi.org/10.1007/s10909-010-0216-

    Effective forces in colloidal mixtures: from depletion attraction to accumulation repulsion

    Full text link
    Computer simulations and theory are used to systematically investigate how the effective force between two big colloidal spheres in a sea of small spheres depends on the basic (big-small and small-small) interactions. The latter are modeled as hard-core pair potentials with a Yukawa tail which can be both repulsive or attractive. For a repulsive small-small interaction, the effective force follows the trends as predicted by a mapping onto an effective non-additive hard-core mixture: both a depletion attraction and an accumulation repulsion caused by small spheres adsorbing onto the big ones can be obtained depending on the sign of the big-small interaction. For repulsive big-small interactions, the effect of adding a small-small attraction also follows the trends predicted by the mapping. But a more subtle ``repulsion through attraction'' effect arises when both big-small and small-small attractions occur: upon increasing the strength of the small-small interaction, the effective potential becomes more repulsive. We have further tested several theoretical methods against our computer simulations: The superposition approximation works best for an added big-small repulsion, and breaks down for a strong big-small attraction, while density functional theory is very accurate for any big-small interaction when the small particles are pure hard-spheres. The theoretical methods perform most poorly for small-small attractions.Comment: submitted to PRE; New version includes an important quantitative correction to several of the simulations. The main conclusions remain unchanged thoug

    Cold atom Clocks and Applications

    Full text link
    This paper describes advances in microwave frequency standards using laser-cooled atoms at BNM-SYRTE. First, recent improvements of the 133^{133}Cs and 87^{87}Rb atomic fountains are described. Thanks to the routine use of a cryogenic sapphire oscillator as an ultra-stable local frequency reference, a fountain frequency instability of 1.6×10−14τ−1/21.6\times 10^{-14}\tau^{-1/2} where τ\tau is the measurement time in seconds is measured. The second advance is a powerful method to control the frequency shift due to cold collisions. These two advances lead to a frequency stability of 2×10−162\times 10^{-16} at 50,000sforthefirsttimeforprimarystandards.Inaddition,theseclocksrealizetheSIsecondwithanaccuracyof50,000s for the first time for primary standards. In addition, these clocks realize the SI second with an accuracy of 7\times 10^{-16},oneorderofmagnitudebelowthatofuncooleddevices.Inasecondpart,wedescribetestsofpossiblevariationsoffundamentalconstantsusing, one order of magnitude below that of uncooled devices. In a second part, we describe tests of possible variations of fundamental constants using ^{87}RbandRb and ^{133}$Cs fountains. Finally we give an update on the cold atom space clock PHARAO developed in collaboration with CNES. This clock is one of the main instruments of the ACES/ESA mission which is scheduled to fly on board the International Space Station in 2008, enabling a new generation of relativity tests.Comment: 30 pages, 11 figure

    Vortices in multicomponent Bose-Einstein condensates

    Full text link
    We review the topic of quantized vortices in multicomponent Bose-Einstein condensates of dilute atomic gases, with an emphasis on that in two-component condensates. First, we review the fundamental structure, stability and dynamics of a single vortex state in a slowly rotating two-component condensates. To understand recent experimental results, we use the coupled Gross-Pitaevskii equations and the generalized nonlinear sigma model. An axisymmetric vortex state, which was observed by the JILA group, can be regarded as a topologically trivial skyrmion in the pseudospin representation. The internal, coherent coupling between the two components breaks the axisymmetry of the vortex state, resulting in a stable vortex molecule (a meron pair). We also mention unconventional vortex states and monopole excitations in a spin-1 Bose-Einstein condensate. Next, we discuss a rich variety of vortex states realized in rapidly rotating two-component Bose-Einstein condensates. We introduce a phase diagram with axes of rotation frequency and the intercomponent coupling strength. This phase diagram reveals unconventional vortex states such as a square lattice, a double-core lattice, vortex stripes and vortex sheets, all of which are in an experimentally accessible parameter regime. The coherent coupling leads to an effective attractive interaction between two components, providing not only a promising candidate to tune the intercomponent interaction to study the rich vortex phases but also a new regime to explore vortex states consisting of vortex molecules characterized by anisotropic vorticity. A recent experiment by the JILA group vindicated the formation of a square vortex lattice in this system.Comment: 69 pages, 25 figures, Invited review article for International Journal of Modern Physics

    Magnetic correlations and quantum criticality in the insulating antiferromagnetic, insulating spin liquid, renormalized Fermi liquid, and metallic antiferromagnetic phases of the Mott system V_2O_3

    Get PDF
    Magnetic correlations in all four phases of pure and doped vanadium sesquioxide V_2O_3 have been examined by magnetic thermal neutron scattering. While the antiferromagnetic insulator can be accounted for by a Heisenberg localized spin model, the long range order in the antiferromagnetic metal is an incommensurate spin-density-wave, resulting from a Fermi surface nesting instability. Spin dynamics in the strongly correlated metal are dominated by spin fluctuations in the Stoner electron-hole continuum. Furthermore, our results in metallic V_2O_3 represent an unprecedentedly complete characterization of the spin fluctuations near a metallic quantum critical point, and provide quantitative support for the SCR theory for itinerant antiferromagnets in the small moment limit. Dynamic magnetic correlations for energy smaller than k_BT in the paramagnetic insulator carry substantial magnetic spectral weight. However, the correlation length extends only to the nearest neighbor distance. The phase transition to the antiferromagnetic insulator introduces a sudden switching of magnetic correlations to a different spatial periodicity which indicates a sudden change in the underlying spin Hamiltonian. To describe this phase transition and also the unusual short range order in the paramagnetic state, it seems necessary to take into account the orbital degrees of freedom associated with the degenerate d-orbitals at the Fermi level in V_2O_3.Comment: Postscript file, 24 pages, 26 figures, 2 tables, accepted by Phys. Rev.
    • 

    corecore