2,423 research outputs found

    Generic Trace Logics

    Get PDF
    We combine previous work on coalgebraic logic with the coalgebraic traces semantics of Hasuo, Jacobs, and Sokolova

    Towards Nominal Formal Languages

    Get PDF
    We introduce formal languages over infinite alphabets where words may contain binders. We define the notions of nominal language, nominal monoid, and nominal regular expressions. Moreover, we extend history-dependent automata (HD-automata) by adding stack, and study the recognisability of nominal languages

    Strongly Complete Logics for Coalgebras

    Get PDF
    Coalgebras for a functor model different types of transition systems in a uniform way. This paper focuses on a uniform account of finitary logics for set-based coalgebras. In particular, a general construction of a logic from an arbitrary set-functor is given and proven to be strongly complete under additional assumptions. We proceed in three parts. Part I argues that sifted colimit preserving functors are those functors that preserve universal algebraic structure. Our main theorem here states that a functor preserves sifted colimits if and only if it has a finitary presentation by operations and equations. Moreover, the presentation of the category of algebras for the functor is obtained compositionally from the presentations of the underlying category and of the functor. Part II investigates algebras for a functor over ind-completions and extends the theorem of J{\'o}nsson and Tarski on canonical extensions of Boolean algebras with operators to this setting. Part III shows, based on Part I, how to associate a finitary logic to any finite-sets preserving functor T. Based on Part II we prove the logic to be strongly complete under a reasonable condition on T

    Algebraic Theories over Nominal Sets

    Get PDF
    We investigate the foundations of a theory of algebraic data types with variable binding inside classical universal algebra. In the first part, a category-theoretic study of monads over the nominal sets of Gabbay and Pitts leads us to introduce new notions of finitary based monads and uniform monads. In a second part we spell out these notions in the language of universal algebra, show how to recover the logics of Gabbay-Mathijssen and Clouston-Pitts, and apply classical results from universal algebra.Comment: 16 page

    Foreword: Special Issue on Coalgebraic Logic

    Get PDF
    The second Dagstuhl seminar on coalgebraic logics took place from October 7-12, 2012, in the Leibniz Forschungszentrum Schloss Dagstuhl, following a successful earlier one in December 2009. From the 44 researchers who attended and the 30 talks presented, this collection highlights some of the progress that has been made in the field. We are grateful to Giuseppe Longo and his interest in a special issue in Mathematical Structures in Computer Science

    Coalgebras and Their Logics

    Get PDF
    Transition systems pervade much of computer science. This article outlines the beginnings of a general theory of specification languages for transition systems. More specifically, transition systems are generalised to coalgebras. Specification languages together with their proof systems, in the following called (logical or modal) calculi, are presented by the associated classes of algebras (e.g., classical propositional logic by Boolean algebras). Stone duality will be used to relate the logics and their coalgebraic semantics

    Preface

    Get PDF

    Modal Rules are Co-Implications

    Get PDF
    In [13], it was shown that modal logic for coalgebras dualises—concerning definability— equational logic for algebras. This paper establishes that, similarly, modal rules dualise implications:It is shown that a class of coalgebras is definable by modal rules iff it is closed under H (images) and Σ (disjoint unions). As a corollary the expressive power of rules of infinitary modal logic on Kripke frames is characterised

    Quasivarieties and Varieties of Ordered Algebras: Regularity and Exactness

    Get PDF
    We characterise quasivarieties and varieties of ordered algebras categorically in terms of regularity, exactness and the existence of a suitable generator. The notions of regularity and exactness need to be understood in the sense of category theory enriched over posets. We also prove that finitary varieties of ordered algebras are cocompletions of their theories under sifted colimits (again, in the enriched sense)
    corecore