87 research outputs found

    Moment Tensor Analysis of Acoustic Emissions Induced by Laboratory-based Hydraulic Fracturing in Granite,

    Get PDF
    Moment Tensors of hydraulically induced AEs: Hydraulic fracturing is an important technique in the development of enhanced geothermal systems and unconventional resources. Although the fracture modes induced by hydraulic fracturing influence the recovery efficiency of the resources, the current understanding of this relationship is insufficient. In this study, we considered the acoustic emissions (AEs) induced during hydraulic fracturing under uniaxial loading conditions in the laboratory, and applied a moment tensor analysis by carefully correcting the coupling condition and directivity of AE transducers. Experiments were conducted for two types of Kurokami–jima granite samples: those with a rift plane perpendicular (Type H) or parallel (Type V) to the expected direction of fracture propagation (i.e. along the loading axis). In the experiments, both sample types experienced a significant number of shear, tensile and compressive events. The dominant fracture mode for Type H samples is found to be tensile events in which the fracture plane is parallel to the loading axis, whereas for Type V samples, shear events are dominant. This difference suggests that the dominant fracture modes induced by hydraulic fracturing are highly dependent on the relationship between the direction of fracture propagation and orientation of pre-existing weak planes

    New readout and data-acquisition system in an electron-tracking Compton camera for MeV gamma-ray astronomy (SMILE-II)

    Get PDF
    For MeV gamma-ray astronomy, we have developed an electron-tracking Compton camera (ETCC) as a MeV gamma-ray telescope capable of rejecting the radiation background and attaining the high sensitivity of near 1 mCrab in space. Our ETCC comprises a gaseous time-projection chamber (TPC) with a micro pattern gas detector for tracking recoil electrons and a position-sensitive scintillation camera for detecting scattered gamma rays. After the success of a first balloon experiment in 2006 with a small ETCC (using a 10×\times10×\times15 cm3^3 TPC) for measuring diffuse cosmic and atmospheric sub-MeV gamma rays (Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I; SMILE-I), a (30 cm)3^{3} medium-sized ETCC was developed to measure MeV gamma-ray spectra from celestial sources, such as the Crab Nebula, with single-day balloon flights (SMILE-II). To achieve this goal, a 100-times-larger detection area compared with that of SMILE-I is required without changing the weight or power consumption of the detector system. In addition, the event rate is also expected to dramatically increase during observation. Here, we describe both the concept and the performance of the new data-acquisition system with this (30 cm)3^{3} ETCC to manage 100 times more data while satisfying the severe restrictions regarding the weight and power consumption imposed by a balloon-borne observation. In particular, to improve the detection efficiency of the fine tracks in the TPC from \sim10\% to \sim100\%, we introduce a new data-handling algorithm in the TPC. Therefore, for efficient management of such large amounts of data, we developed a data-acquisition system with parallel data flow.Comment: 11 pages, 24 figure

    Novel Respiratory Impedance-Based Phenotypes Reflect Different Pathophysiologies in Chronic Obstructive Pulmonary Disease Patients.

    Get PDF
    Purpose: The forced oscillation technique (FOT) is a non-invasive method to measure respiratory impedance, the respiratory resistance (Rrs) and reactance (Xrs). The disease probability measure (DPM) is a useful computed tomography (CT) imaging variable for the assessment of gas trapping and emphysema in patients with chronic obstructive pulmonary disease (COPD) using pairs of inspiratory and expiratory CT images. We aimed to develop FOT-based phenotypes and determine whether the phenotypes and their imaging characteristics could facilitate the understanding of COPD pathophysiology.Patients and methods: FOT and spirometry were examined in 164 COPD patients and 22 non-COPD smokers. COPD patients were divided into four FOT-based phenotypes (NL, normal group; RD, resistance-dominant group; XD, reactance-dominant group; and MIX, mixed group) based on the 3rd quartile values of R5 (Rrs at 5Hz) and X5 (Xrs at 5Hz) in the non-COPD group. The emphysematous lesions and the airway lesions were quantitatively assessed in CT images by low attenuation volume and the square root of the wall area of a hypothetical airway with an internal perimeter of 10 mm (√Aaw at Pi10), respectively. DPM imaging analysis was also performed in 131 COPD patients. We investigated the differences in COPD parameters between the FOT-based phenotypes.Results: √Aaw at Pi10 were significantly higher in the RD, XD, and MIX groups than in the NL group. The XD group showed lower pulmonary function and higher dyspnea scores than the RD group. No significant changes in DPM values were observed between the RD and the NL groups. The gas-trapping area was significantly higher in the XD group than in the NL group. The MIX group showed the highest dyspnea score, most emphysematous lesions, and the lowest forced expiratory volume in 1 s % predicted value.Conclusion: The FOT-based phenotyping may be useful to assess pathophysiological changes of COPD with CT assessments

    Improved Characteristics of Integrated HTS rf SQUID on Bicrystal SrTiO3 Substrate Resonator Covered with HTS Thin Films in Flip-Chip Geometry

    Get PDF
    AbstractIntegrated high-temperature superconductor (HTS) radio-frequency (rf) superconducting quantum interference devices (SQUIDs) based on a bicrystal SrTiO3 substrate was investigated for application to magnetic contaminant detection. By covering a wide superconducting weak link and/or a slit of the YBa2Cu3O7-x SQUID with HTS thin films in flip-chip geometry, characteristics such as effective area and 1/f noise profile of the SQUID were successfully improved. By installing the covered SQUID in a magnetic contaminant detection system, it was demonstrated that the system can detect a tungsten ball of 15μm in diameter with a signal to noise ratio of about 2
    corecore