57 research outputs found

    Spatial variation in coda Q and stressing rate around the Atotsugawa fault zone in a high strain rate zone, central Japan

    Get PDF
    We investigated a detailed spatial distribution of coda Q around the Atotsugawa fault zone in a high strain rate zone, central Japan, using waveform data from dense seismic observations. Low coda Q at lower frequencies is localized along the fault zone, showing a good spatial correlation with a low velocity zone in the lower crust. On the other hand, we find no characteristic spatial pattern of coda Q at higher frequencies. The spatial correlation between the low coda Q at the lower frequencies, and the low velocity zone, suggests that ductile deformations below the brittle-ductile transition zone in the crust contribute to the variation in coda Q at lower frequencies. We estimated a spatial variation in the stressing rate of 15-18 kPa/year in the crust from that of coda Q in the analyzed region. This value is greater than that estimated from GPS data. We conclude, therefore, that a high deformation rate below the brittle-ductile transition zone causes the high stressing rate, which results in the high strain rate along the fault zone observed by GPS. © The Society of Geomagnetism and Earth Planetary and Space Sciences (SGEPSS) The Seismological Society of Japan The Volcanological Society of Japan The Geodetic Society of Japan The Japanese Society for Planetary Sciences TERRAPUB

    Stress relaxation arrested the mainshock rupture of the 2016 Central Tottori earthquake

    Get PDF
    地震の破壊はなぜ止まるのか? --2016年鳥取県中部地震の断層サイズを決めたもの--. 京都大学プレスリリース. 2021-08-12.After a large earthquake, many small earthquakes, called aftershocks, ensue. Additional large earthquakes typically do not occur, despite the fact that the large static stress near the edges of the fault is expected to trigger further large earthquakes at these locations. Here we analyse ~10, 000 highly accurate focal mechanism solutions of aftershocks of the 2016 Mw 6.2 Central Tottori earthquake in Japan. We determine the location of the horizontal edges of the mainshock fault relative to the aftershock hypocentres, with an accuracy of approximately 200 m. We find that aftershocks rarely occur near the horizontal edges and extensions of the fault. We propose that the mainshock rupture was arrested within areas characterised by substantial stress relaxation prior to the main earthquake. This stress relaxation along fault edges could explain why mainshocks are rarely followed by further large earthquakes

    Structural variation from off Shikoku to the Kii Peninsula related to various earhthquake phenomena

    Get PDF
    南海トラフで繰り返し発生する巨大地震の中には、東海・東南海・南海地震が連動して発生する超巨大地震のケースがあることが指摘されている。このような超巨大地震について、どのような場合に連動し、あるいは非連動性巨大地震となるのかを明らかにすることが必要である。連動型地震の滑り域の範囲がどこまで広がるかを見積もることが重要な課題であり、そのためには南海トラフから沈み込むフィリピン海プレートの形状およびプレート境界周辺の構造、地震活動に関する詳細かつ高精度な情報が必要である。また、南海地震単独で発生した場合についても、深部および浅部低周波地震発生域まで含めた正確な破壊の広がりの把握、複雑な破壊分布の原因を明らかにするために南海地震破壊域とその縁辺での地殻構造や地震活動は重要な情報となる。平成20年度は日向灘、平成21年度は四国沖で調査を実施し、平成22年度は調査海域を東方の紀伊半島沖まで拡大し、沈み込み帯の地殻構造、巨大地震の発生、地震活動の相互関係の解明を目的として、南海・地震破壊域における沈み込みに関する詳細な構造のイメージングおよび地震のアスペリティに関する構造を明らかにするためのデータの取得、および西南日本の付加体先端部付近で発生している低周波地震や微動を含む自然地震観測を実施した。  本講演では、四国沖?紀伊半島沖の平成21~22年度の調査結果について述べる。平成21年10月、および平成22年10~11月、(独)海洋研究開発機構の海洋調査船「かいれい」によって短周期海底地震計各々180台と大容量チューンドエアガン(7800cu. in.)を用いた屈折法・広角反射法探査を実施した(図1)。海底地震計設置期間中に自然地震観測も実施した。四国沖では21観測点、紀伊半島沖では20観測点による約9ヶ月間の長期地震観測も実施した(一部実施中)。なお、本調査は文部科学省からの受託研究「東海・東南海・南海地震の連動性評価のための 調査観測・研究」の個別研究テーマ「南海トラフ域海域地震探査・地震観測」(平成20年度から受託)の一環として実施した。  一部の調査測線の解析の結果、足摺岬沖から日向灘に向かって約6km/sの古い付加体を示す岩体の分布が海側に張り出していること、また、SK05の構造モデルによると、SK03とSK02の中間付近からSK01付近までの付加堆積物が極端に薄いことなど、トラフ平行方向に構造変化があることがわかり、破壊様式の違いに関係する構造ではないかと考えられる。また、測線延長上のHi-net陸上観測点のデータを加えた海陸統合解析を実施しており、これにより深部低周波地震現象と構造との関連性が明らかになると期待されるC11-10発表要旨, 日本地震学会2011年度秋季大会(2011年10月12日~15日, 静岡県静岡市

    Shallow seismic reflection profiling across the western marginal faults of Kitakami Lowland, northern Honshu Island, Japan

    Get PDF
    In 1997-1998, integrated passive and active seismic experiments were conducted in northern Honshu, Japan. These experiments aimed at understanding the relationship between earthquake occurrence and deformation process of the intra-island-arc crust. In the summer of 1998, a shallow seismic reflection survey was conducted to obtain the fault’s detailed geometry to depths of 1km across the western marginal faults of Kitakami Lowland, Iwate Pref., Japan. The seismic source was a mini-vibrator. The data set recorded by the digital telemetry system was processed using seismic reflection technique. Imaging was preformed using conventional common mid-point processing steps, including post-stack migration and depth conversion. A reflection image shows the deep geometry of the Uwandaira fault, which is positioned at the eastern edge of the Ou Backbone range

    Prominent reflector beneath around the segmentation boundary between Tonankai-Nankai earthquake area

    Get PDF
    In the Nankai Trough subduction seismogenic zone, the Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. In most cases, first break of such large events of Nankai Trough usually begins from southwest off the Kii Peninsula so far. The idea of split Philippine Sea plate between the Kii Peninsula and the Shikoku Island, which explains seismicity, tectonic background, receiver function image and historical plate motion, was previously suggested. Moreover, between the Kii Peninsula and the Shikoku Island, there is a gap of deep low-frequency events observed in the belt-like zone along the strike of the subducting Philippine Sea plate. In 2010 and 2011, we conducted the large-scale high-resolution wide-angle and reflection (MCS) seismic study, and long-term observation from off Shikoku and Kii Peninsula. Marine active source seismic data have been acquired along grid two-dimensional profiles having the total length of ~800km/year. A three-dimensional seismic tomography using active and passive seismic data observed both land and ocean bottom stations have been also performed. From those data, we found a possible prominent reflector imaged in the offshore side in the Kii channel at the depth of ~18km. The velocity just beneath the reflector cannot be determined due to the lack of ray paths. Based of the amplitude information, we interpret the reflector as the forearc Moho based on the velocity gap (from ~6.4km/s to ~7.4km/s). However, the reflector is shallower than the forearc Moho of other area along the Nankai Trough. Similar reflectors are recognized along other seismic profiles around the Kii channel. In this presentation, we will show the result of structure analysis to understand the peculiar structure including the prominent reflector around the Kii channel. Relation between the structure and the existence of the segmentation of the Nankai megathrust earthquake or seismic gap of the deep low-frequency events will be also discussed. This study is part of 'Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan.Poster abstract T43C-2670 presented at 2013 Fall Meeting, AGU, San Francisco, Calif., 9-13 Dec

    Measurement of the signal delay of the seismic recorders

    Get PDF
    <報告
    corecore