215 research outputs found

    Theory of superconducting and magnetic proximity effect in S∣\midF structures with inhomogeneous magnetization textures and spin-active interfaces

    Full text link
    We present a study of the proximity effect and the inverse proximity effect in a superconductor∣\midferromagnet bilayer, taking into account several important factors which mostly have been ignored in the literature so far. These include spin-dependent interfacial phase shifts (spin-DIPS) and inhomogeneous textures of the magnetization in the ferromagnetic layer, both of which are expected to be present in real experimental samples. Our approach is numerical, allowing us to access the full proximity effect regime. In Part I of this work, we study the superconducting proximity effect and the resulting local density of states in an inhomogeneous ferromagnet with a non-trivial magnetic texture. Our two main results in Part I are a study of how Bloch and N\'eel domain walls affect the proximity-induced superconducting correlations and a study of the superconducting proximity effect in a conical ferromagnet. The latter topic should be relevant for the ferromagnet Ho, which was recently used in an experiment to demonstrate the possibility to generate and sustain long-range triplet superconducting correlations. In Part II of this work, we investigate the inverse proximity effect with emphasis on the induced magnetization in the superconducting region as a result of the "leakage" from the ferromagnetic region. It is shown that the presence of spin-DIPS modify conclusions obtained previously in the literature with regard to the induced magnetization in the superconducting region. In particular, we find that the spin-DIPS can trigger an anti-screening effect of the magnetization, leading to an induced magnetization in the superconducting region with \textit{the same sign} as in the proximity ferromagnet.Comment: 16 pages, 18 figures. Accepted for publication in Phys. Rev.

    Nonsinusoidal current-phase relations and the 0−π0-\pi transition in diffusive ferromagnetic Josephson junctions

    Full text link
    We study the effect of the interfacial transparency on the Josephson current in a diffusive ferromagnetic contact between two superconductors. In contrast to the cases of the fully transparent and the low-transparency interfaces, the current-phase relation is shown to be nonsinusoidal for a finite transparency. It is demonstrated that even for the nearly fully transparent interfaces the small corrections due to weak interfacial disorders contribute a small second-harmonic component in the current-phase relation. For a certain thicknesses of the ferromagnetic contact and the exchange field this can lead to a tiny minimum supercurrent at the crossover between 0 and π\pi states of the junction. Our theory has a satisfactory agreement with the recent experiments in which a finite supercurrent was observed at the transition temperature. We further explain the possibility for observation of a large residual supercurrent if the interfaces have an intermediate transparency.Comment: 7 pages, 4 figure

    Josephson current in a superconductor-ferromagnet junction with two non-collinear magnetic domains

    Full text link
    We study the Josephson effect in a superconductor--ferromagnet--superconductor (SFS) junction with ferromagnetic domains of non-collinear magnetization. As a model for our study we consider a diffusive junction with two ferromagnetic domains along the junction. The superconductor is assumed to be close to the critical temperature TcT_c, and the linearized Usadel equations predict a sinusoidal current-phase relation. We find analytically the critical current as a function of domain lengths and of the angle between the orientations of their magnetizations. As a function of those parameters, the junction may undergo transitions between 0 and π\pi phases. We find that the presence of domains reduces the range of junction lengths at which the π\pi phase is observed. For the junction with two domains of the same length, the π\pi phase totally disappears as soon as the misorientation angle exceeds π/2\pi/2. We further comment on possible implication of our results for experimentally observable 0--π\pi transitions in SFS junctions.Comment: 9 pages, 4 figures, minor changes, references adde

    Triplet proximity effect in FSF trilayers

    Full text link
    We study the critical temperature T_c of FSF trilayers (F is a ferromagnet, S is a singlet superconductor), where the triplet superconducting component is generated at noncollinear magnetizations of the F layers. An exact numerical method is employed to calculate T_c as a function of the trilayer parameters, in particular, mutual orientation of magnetizations. Analytically, we consider limiting cases. Our results determine conditions which are necessary for existence of recently investigated odd triplet superconductivity in SF multilayers.Comment: 5 pages, 4 EPS figures; the style file jetpl.cls is included. Version 2: minor corrections, added reference. Version 3: minor correction

    Beyond Moore's technologies: operation principles of a superconductor alternative

    Full text link
    The predictions of Moore's law are considered by experts to be valid until 2020 giving rise to "post-Moore's" technologies afterwards. Energy efficiency is one of the major challenges in high-performance computing that should be answered. Superconductor digital technology is a promising post-Moore's alternative for the development of supercomputers. In this paper, we consider operation principles of an energy-efficient superconductor logic and memory circuits with a short retrospective review of their evolution. We analyze their shortcomings in respect to computer circuits design. Possible ways of further research are outlined.Comment: OPEN ACCES

    Identifying the odd-frequency superconducting state by a field-induced Josephson effect

    Full text link
    Superconducting order parameters that are odd under exchange of time-coordinates of the electrons constituting a Cooper-pair, are potentially of great importance both conceptually and technologically. Recent experiments report that such an odd-frequency superconducting {\it bulk} state may be realized in certain heavy-fermion compounds. While the Josephson current normally only flows between superconductors with the same symmetries with respect to frequency, we demonstrate that an exchange field may induce a current between diffusive even- and odd-frequency superconductors. This suggests a way to identify the possible existence of bulk odd-frequency superconductors.Comment: 10 pages, 7 figures. To appear in Physical Review

    Superconducting decay length in a ferromagnetic metal

    Get PDF
    The complex decay length xi characterizing penetration of superconducting correlations into a ferromagnet due to the proximity effect is studied theoretically in the frame of the linearized Eilenberger equations. The real part xi_1 and imaginary part xi_2 of the decay length are calculated as functions of exchange energy and the rates of ordinary, spin flip and spin orbit electronic scattering in a ferromagnet. The lengths xi_1,2 determine the spatial scales of, respectively, decay and oscillation of a critical current in SFS Josephson junctions in the limit of large distance between superconducting electrodes. The developed theory provides the criteria of applicability of the expressions for xi_1 and xi_2 in the dirty and the clean limits which are commonly used in the analysis of SF hybrid structures.Comment: 5 pages, 3 figure

    Method for reliable realization of a varphi Josephson junction

    Full text link
    We propose a method to realize a ϕ\phi Josephson junction by combining alternating 0 and π\pi parts (sub junctions) with an intrinsically non-sinusoidal current-phase relation (CPR). Conditions for the realization of the ϕ\phi ground state are analyzed. It is shown that taking into account the non-sinusoidal CPR for a "clean junction with a ferromagnetic (F) barrier, one can significantly enlarge the domain (regime of suitable F-layer thicknesses) of the ϕ\phi ground state and make the practical realization of ϕ\phi Josephson junctions feasible. Such junctions may also have two different stable solutions, such as 0 and π\pi, 0 and ϕ\phi, or ϕ\phi and π\pi

    Nonequilibrium effects in tunnel Josephson junctions

    Get PDF
    We study nonequilibrium effects in current transport through voltage biased tunnel junction with long diffusive superconducting leads at low applied voltage, eV≪2ΔeV \ll 2\Delta, and finite temperatures. Due to a small value of the Josephson frequency, the quasiparticle spectrum adiabatically follows the time evolution of the superconducting phase difference, which results in the formation of oscillating bound states in the vicinity of the tunnel junction (Andreev band). The quasiparticles trapped by the Andreev band generate higher even harmonics of the Josephson ac current, and also, in the presence of inelastic scattering, a non-equilibrium dc current, which may considerably exceed the dc quasiparticle current given by the tunnel model. The distribution of travelling quasiparticles also deviates from the equilibrium due to the spectrum oscillations, which results in an additional contribution to the dc current, proportional to V\sqrt{V}.Comment: 11 pages, 7 figures, to be published in Phys. Rev.
    • …
    corecore