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The decay length 

 

ξ

 

 is an important material param-
eter which characterizes the scale of penetration of
superconducting correlation into a non-superconduct-
ing material across an interface with a superconductor.
The critical current 

 

I

 

C

 

 in a Josephson junction scales
exponentially with the distance between the super-
conducting electrodes 

 

L

 

 if 

 

L

 

 is larger than 

 

ξ

 

: 

 

I

 

C

 

 

 

∝

 

exp{

 

−

 

L

 

/

 

ξ

 

}. In nonmagnetic materials, the decay length
is a real number, while in ferromagnets 

 

ξ

 

 is a complex
number (see [1–4] for reviews). In particular, if the con-
dition of the so-called dirty limit is fulfilled in the F
metal, the decay length is

(1)

where 

 

D

 

F

 

 and 

 

H

 

 are the diffusive coefficient and the
exchange field in a ferromagnet, respectively. In the
clean limit,

(2)

where 

 

v

 

F

 

 is the Fermi velocity in a ferromagnet and 

 

l

 

 is
the electron mean free path. From (1) and (2) it is
clearly seen that for dirty materials 

 

ξ

 

2

 

 > 

 

ξ

 

1

 

, and, in the
limit of large 

 

H

 

 

 

�

 

 

 

π

 

T

 

, the characteristic lengths are
nearly equal, 

 

ξ

 

1

 

 

 

≈

 

 

 

ξ

 

2

 

. In the clean limit, length scales 

 

ξ

 

1

 

and 

 

ξ

 

2

 

 are completely independent.
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The text was submitted by the authors in English.
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The existing experimental data obtained up to now
in SFS Josephson junctions [5–16] can be separated
into two groups depending on whether a weak or a
strong ferromagnet was used for junction fabrication.
To be considered as a weak ferromagnet, the dilute fer-
romagnetic alloys (e.g., Cu

 

1 – 

 

x

 

Ni

 

x

 

) should be in the
range of concentration close to the critical one (

 

x

 

 

 

≈

 

 0.5).
The electron mean free path in these alloys is very
small, fulfilling the conditions of the dirty limit. As a
result, the observed relation between the decay (

 

ξ

 

1

 

) and
oscillation (

 

ξ

 

2

 

) lengths, 

 

ξ

 

2

 

 

 

�

 

 

 

ξ

 

1

 

, is close to that follow-
ing from (1). It is necessary to point out that, in some
experiments [12], the observed difference between 

 

ξ

 

2

 

and 

 

ξ

 

1

 

 is so large that it cannot be explained by the tem-
perature factor in (1) only, and spin-dependent scatter-
ing processes should be taken into account [12, 17].

In contrast, in structures with a strong ferromagnet
[11, 16] (Ni, Ni

 

3

 

Al), the relation between 

 

ξ

 

1

 

 and 

 

ξ

 

2

 

 is
just the opposite, and a large ratio 

 

ξ

 

1

 

/

 

ξ

 

2

 

 ~ 10 was
observed in Ni

 

3

 

Al [16]. Therefore, a more complex
model should be developed for the data’s interpretation.

Most previous theoretical work on SF hybrids was
performed assuming the dirty limit (see [2–4]), and
only first-order corrections to the decay length in the
small parameter 

 

l

 

ξ

 

H

 

 

 

�

 

 1 were discussed in [18–20].
Some solutions in the clean and intermediate regimes
were obtained in a number of works, e.g., [21–24], but
were not analyzed in detail. The purpose of this work is
to develop general theory describing the decay length 

 

ξ

 

in a ferromagnet for any relation between 

 

ξ

 

0

 

, 

 

ξ

 

H

 

, and 

 

l

 

.

To do this, we consider a generic SFS Josephson
junction with arbitrary transparency of SF interfaces
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and a large thickness of the F layer, 

 

L

 

 

 

�

 

 

 

ξ

 

1

 

. It is well
known [1–4] that the critical current of this structure
should fall exponentially with 

 

L

 

,

Here, the prefactor 

 

I0 depends on the physical proper-
ties of SF interfaces and the nearby S and F regions,
while ξ depends only on the bulk parameters of F mate-
rial and can be obtained [25, 26] as the solution of lin-
earized quasi-classical Eilenberger equations [27].
These equations are valid at distances from the inter-
faces larger than ξ and have the form [27, 3, 4]

(3)

(4)

(5)

Here, θ is the angle between the direction of electron
velocity vF and the x axis, which is oriented perpendic-
ular to the interfaces; f± = f±(x, θ) are the quasi-classical
Eilenberger functions describing the behavior of spin-
up and spin-down electrons in the presence of the
exchange field H oriented parallel to the SF interfaces.
The parameters lso = vFτso and lz = vFτz, lx = vFτx are the
electron mean free paths for magnetic scattering paral-
lel and perpendicular to the direction of H, while lso =
vFτso is the electron mean free path for the spin–orbit
interaction.

The solution of Eq. (3) has the form

(6)

where ξ is the effective decay length independent of θ.
Substitution of (6) into (3) yields a system of two equa-
tions for C±(θ):

(7)

(8)

The solution of these equations has the form

(9)

IC I0 L/ξ–{ }.exp=

ξ0
1– iξH

1–±( ) f ± θ ∂
∂x
------ f ±cos+

=  leff
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leff
1– l 1– lz

1– 2lx
1– ,+ +=

lsoeff
1– lso
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1– , …〈 〉– …( ) θsin θ.d

0

π
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ξ
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⎨ ⎬
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, ξ 1–exp ξ1
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=  leff
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ξ0
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=  leff
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leff Λ+
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(10)

Averaging in (9) and (10) over the angle θ, we get a
system of two equations for 〈C±(θ)〉. Its compatibility
condition results in the equation for the effective decay
length ξeff:

(11)

It is clearly seen that, if the effective spin–orbit

interaction is so strong that  ≥ , then the right-
hand side of (11) is real. Therefore, in this case Eq. (11)

provides us with two solutions for , while  = 0.
It is necessary to mention that, in the absence of ferro-
magnetic ordering (H = 0) due to degeneracy in the spin
orientation, the critical current must not depend on lsoeff.
In this situation, only the root of the equation corre-
sponding to the “+” sign in Eq. (11) should be consid-
ered,

(12)

which provides the largest value of the decay length.
The solution of Eq. (11),

(13)

with the smaller ξ = ξ12, also exists at finite H. (In the
limit H  0, the prefactor before this exponential
solution goes to zero [17], making the critical current
independent of ξ12.) At lsoeff = ξH, these two lengths are
equal to each other, ξ11 = ξ12. With a further increase in
H, the right-hand side of Eq. (11) becomes complex,
and Eq. (11) can be rewritten as

(14)

The sign “–” in Eq. (11) simply provides the equa-
tion for the complex-conjugate solution of Eq. (14).

In the limit leff � ξ, one can expand the hyperbolic
tangent in (14) in series, keeping the first three terms,
and get

(15)
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(16)

The expressions in the square brackets in (15) and (16)
give first-order corrections to the dirty limit formula
[17] for ξ1 and ξ2. This approximation is valid if

(17)

In the limit ξ0, lsoeff � ξH, the expression ξ =

, τ = l/vF follows from Eqs. (15) and

(16). This formula was obtained earlier in [18, 19] and
can be interpreted as a complex correction to the diffu-

sion coefficient,  = DF .

In the clean limit,

(18)
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In the first approximation, we may set the hyperbolic
tangent in (14) equal to unity and get

(19)

It is clearly seen that, for   0, this formula
transforms into Eq. (2). In the next approximation, it is
easy to find that the corrections to (19),

(20)

(21)

where

are oscillating functions of ξH.
Equation (14) is equivalent to the system of equa-

tions for ξ1 and ξ2:

(22)

(23)

From the structure of equations (22) and (23), it fol-

lows that an increase in  leads to an increase in .
This, in turn, results in an increase in the second nega-

tive item on the right-hand side of (22). Since  must

be a positive value, the increase in  should be
accompanied by a jump at a certain point to the positive
branch of cos(x), leading to a discontinuity of the

( ) dependence. This consideration is proved by
the numerical solution of (14) (see Figs. 1–3).

Figures 1 and 2 show the dependences of ( )

and ( ) –  calculated for fixed values of the

parameter . Open triangles and circles in the figures
show the asymptotic dependences (15), (16) and (20),
(21), respectively. It is clearly seen that, in the parame-

ter intervals  ≤ 10 ,  ≥ 2 , expressions (20)
and (21) provide a good fit to the exact solution of
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Fig. 1. Decay length  vs.  calculated for different

values of . The open circles are the asymptotic curves

calculated from (20) for  = 2, 2.5 and 3. The open trian-

gles are the asymptotic curves calculated from (15) for

= 1.1, 1.3, 1.5, and 2. The thin solid lines are the asymp-

totic dependences following from Eq. (15) without the cor-
rection in the square brackets. These curves are calculated

for  = 1.1, 1.3, and 1.5.
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Eq. (14). The dirty limit formulas (15) and (16) are

valid up to  ≤ 2  for  ≤ 2 . Figure 3 gives the

ratio ξ2/ξ1 as a function of  for a set of leff /ξ10. At
H  0, the oscillation length ξ2 goes to infinity.

Therefore, the ratio diverges at   0. With an
increase in H, the ratio rapidly decreases, approaching

the law ξ2/ξ1 ∝  at  ≥ 2.

The discovered behavior of ξ2 and ξ1 is quite general
and must also be observed in structures without ferro-
magnetic ordering. An example is a normal filament of
finite length, which is placed between superconducting
banks and is biased by a dc supercurrent. It was shown
[28], the minigap induced in this filament from the S
electrodes is not a monotonic function of the phase dif-
ference across the structure. This behavior could also
be explained in terms of the specific dependences of ξ2
and ξ1 upon the electron mean free path in current-
biased systems.

In summary, by solving the linearized Eilenberger
equations, we have calculated the real, ξ1, and the imag-
inary, ξ2, part of a decay length as a function of the
exchange energy H and the mean free paths l, lso, lz, and
lx for ordinary, spin-orbit, and spin-flip electronic scat-
tering in a ferromagnet. These parameters, ξ1 and ξ2,
characterize the penetration of superconducting corre-
lations into a ferromagnet due to the proximity effect
and determine the decay and oscillation lengths of the
critical current in long SFS Josephson structures. We
have found the range of validity of expressions (1) and
(2), which are commonly used for interpretation of
experimental data. In particular, the dirty limit expres-

sions (1) are valid if  ≤ 0.5  for  ≤ 0.5 . The
corrected expressions (15) and (16) can be used in a

broader range of  ≤ 2  and  ≤ 2 . A further
increase in the exchange field makes the length ξ2
smaller than leff, thus breaking down the validity of
approximations used in the derivation of the Usadel
equations. It is interesting to note that, in a certain
parameter range, jumps occur in the dependence of ξ2
vs. ξ20, while ξ1 remains a continuous function of ξ20.

We have also demonstrated that intuitive knowledge
about the relation between ξ1 and ξ2, based on the dirty
limit theory, has a very limited range of applicability
and cannot be used for ξH > 5l or for Hτ > 0.1. In par-
ticular, an increase in H is not always accompanied by
a decrease in ξ1, and in a certain parameter range ξ1
may even increase with H. The fact that one may rea-
sonably combine a large decay length with the smaller
period of oscillations looks rather attractive for possible
applications of SFS Josephson junctions.
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