19,447 research outputs found

    Personal code of business ethics

    Get PDF

    Imaging Polarimetric Observations of a New Circumstellar Disk System

    Get PDF
    Few circumstellar disks have been directly observed. Here we use sensitive differential polarimetric techniques to overcome atmospheric speckle noise in order to image the circumstellar material around HD 169142. The detected envelope or disk is considerably smaller than expectations based on the measured strength of the far-IR excess from this system

    The new HiVIS spectropolarimeter and spectropolarimetric calibration of the AEOS telescope

    Get PDF
    We designed, built, and calibrated a new spectropolarimeter for the HiVIS spectrograph (R 12000-49000) on the AEOS telescope. We also did a polarization calibration of the telescope and instrument. We will introduce the design and use of the spectropolarimeter as well as a new data reduction package we have developed, then discuss the polarization calibration of the spectropolarimeter and the AEOS telescope. We used observations of unpolarized standard stars at many pointings to measure the telescope induced polarization and compare it with a Zemax model. The telescope induces polarization of 1-6% with a strong variation with wavelength and pointing, consistent with the altitude and azimuth variation expected. We then used scattered sunlight as a linearly polarized source to measure the telescopes spectropolarimetric response to linearly polarized light. We then made an all-sky map of the telescope's polarization response to calibrate future spectropolarimetry.Comment: PASP 118, June 200

    Microscopic theory of quantum-transport phenomena in mesoscopic systems: A Monte Carlo approach

    Get PDF
    A theoretical investigation of quantum-transport phenomena in mesoscopic systems is presented. In particular, a generalization to ``open systems'' of the well-known semiconductor Bloch equations is proposed. The presence of spatial boundary conditions manifest itself through self-energy corrections and additional source terms in the kinetic equations, whose form is suitable for a solution via a generalized Monte Carlo simulation. The proposed approach is applied to the study of quantum-transport phenomena in double-barrier structures as well as in superlattices, showing a strong interplay between phase coherence and relaxation.Comment: to appear in Phys. Rev. Let

    Computing in Additive Networks with Bounded-Information Codes

    Full text link
    This paper studies the theory of the additive wireless network model, in which the received signal is abstracted as an addition of the transmitted signals. Our central observation is that the crucial challenge for computing in this model is not high contention, as assumed previously, but rather guaranteeing a bounded amount of \emph{information} in each neighborhood per round, a property that we show is achievable using a new random coding technique. Technically, we provide efficient algorithms for fundamental distributed tasks in additive networks, such as solving various symmetry breaking problems, approximating network parameters, and solving an \emph{asymmetry revealing} problem such as computing a maximal input. The key method used is a novel random coding technique that allows a node to successfully decode the received information, as long as it does not contain too many distinct values. We then design our algorithms to produce a limited amount of information in each neighborhood in order to leverage our enriched toolbox for computing in additive networks

    Control in the technical societies: a brief history

    Get PDF
    By the time control engineering emerged as a coherent body of knowledge and practice (during and just after WW2) professional engineering societies had existed for many decades. Since control engineering is an interdisciplinary branch of the profession, new sections devoted to control were quickly established within the various existing technical societies. In addition, some new bodies devoted specifically or primarily to control were established. This article, a revised version of a paper presented at the IEEE 2009 Conference on the History of Technical Societies, describes how control engineering as a distinct branch of engineering became represented in technical societies in a number of countries

    Dynamic rotor mode in antiferromagnetic nanoparticles

    Get PDF
    We present experimental, numerical, and theoretical evidence for a new mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8 nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K. However, the signal from inelastic neutron scattering remains above that temperature, indicating a magnetic system in constant motion. In addition, the precession frequency of the inelastic magnetic signal shows an increase above 100 K. Numerical Langevin simulations of spin dynamics reproduce all measured neutron data and reveal that thermally activated spin canting gives rise to a new type of coherent magnetic precession mode. This "rotor" mode can be seen as a high-temperature version of superparamagnetism and is driven by exchange interactions between the two magnetic sublattices. The frequency of the rotor mode behaves in fair agreement with a simple analytical model, based on a high temperature approximation of the generally accepted Hamiltonian of the system. The extracted model parameters, as the magnetic interaction and the axial anisotropy, are in excellent agreement with results from Mossbauer spectroscopy

    Spectropolarimetry of the H-alpha line in Herbig Ae/Be stars

    Full text link
    Using the HiVIS spectropolarimeter built for the Haleakala 3.7m AEOS telescope, we have obtained a large number of high precision spectropolarimetrc observations (284) of Herbig AeBe stars collected over 53 nights totaling more than 300 hours of observing. Our sample of five HAeBe stars: AB Aurigae, MWC480, MWC120, MWC158 and HD58647, all show systematic variations in the linear polarization amplitude and direction as a function of time and wavelength near the H-alpha line. In all our stars, the H-alpha line profiles show evidence of an intervening disk or outflowing wind, evidenced by strong emission with an absorptive component. The linear polarization varies by 0.2% to 1.5% with the change typically centered in the absorptive part of the line profile. These observations are inconsistent with a simple disk-scattering model or a depolarization model which produce polarization changes centered on the emmissive core. We speculate that polarized absorption via optical pumping of the intervening gas may be the cause.Comment: Accepted for publication in ApJ Letter

    Spectropolarimetric observations of Herbig Ae/Be Stars I: HiVIS spectropolarimetric calibration and reduction techniques

    Full text link
    Using the HiVIS spectropolarimeter built for the Haleakala 3.7m AEOS telescope in Hawaii, we are collecting a large number of high precision spectropolarimetrc observations of stars. In order to precisely measure very small polarization changes, we have performed a number of polarization calibration techniques on the AEOS telescope and HiVIS spectrograph. We have extended our dedicated IDL reduction package and have performed some hardware upgrades to the instrument. We have also used the ESPaDOnS spectropolarimeter on CFHT to verify the HiVIS results with back-to-back observations of MWC 361 and HD163296. Comparision of this and other HiVIS data with stellar observations from the ISIS and WW spectropolarimeters in the literature further shows the usefulness of this instrument.Comment: 35 pages, 44 figures, Accepted by PAS
    • …
    corecore