6,856 research outputs found

    Variational Monte Carlo study of ferromagnetism in the two-orbital Hubbard model on a square lattice

    Full text link
    To understand effects of orbital degeneracy on magnetism, in particular effects of Hund's rule coupling, we study the two-orbital Hubbard model on a square lattice by a variational Monte Carlo method. As a variational wave function, we consider a Gutzwiller projected wave function for a staggered spin and/or orbital ordered state. We find a ferromagnetic phase with staggered orbital order around quarter-filling, i.e., electron number n=1 per site, and an antiferromagnetic phase without orbital order around half-filling n=2. In addition, we find that another ferromagnetic phase without orbital order realizes in a wide filling region for large Hund's rule coupling. These two ferromagnetic states are metallic except for quarter filling. We show that orbital degeneracy and strong correlation effects stabilize the ferromagnetic states.Comment: 4 pages, 2 figure

    Ferromagnetism and orbital order in the two-orbital Hubbard model

    Full text link
    We investigate spin and orbital states of the two-orbital Hubbard model on a square lattice by using a variational Monte Carlo method at quarter-filling, i.e., the electron number per site is one. As a variational wave function, we consider a Gutzwiller projected wave function of a mean-field type wave function for a staggered spin and/or orbital ordered state. Then, we evaluate expectation value of energy for the variational wave functions by using the Monte Carlo method and determine the ground state. In the strong Coulomb interaction region, the ground state is the perfect ferromagnetic state with antiferro-orbital (AF-orbital) order. By decreasing the interaction, we find that the disordered state becomes the ground state. Although we have also considered the paramagnetic state with AF-orbital order, i.e., purely orbital ordered state, and partial ferromagnetic states with and without AF-orbital order, they do not become the ground state.Comment: 4 pages, 1 figure, accepted for publication in Journal of Physics: Conference Serie

    Super and Sub-Poissonian photon statistics for single molecule spectroscopy

    Full text link
    We investigate the distribution of the number of photons emitted by a single molecule undergoing a spectral diffusion process and interacting with a continuous wave laser field. The spectral diffusion is modeled based on a stochastic approach, in the spirit of the Anderson-Kubo line shape theory. Using a generating function formalism we solve the generalized optical Bloch equations, and obtain an exact analytical formula for the line shape and Mandel's Q parameter. The line shape exhibits well known behaviors, including motional narrowing when the stochastic modulation is fast, and power broadening. The Mandel parameter, describing the line shape fluctuations, exhibits a transition from a Quantum sub-Poissonian behavior in the fast modulation limit, to a classical super-Poissonian behavior found in the slow modulation limit. Our result is applicable for weak and strong laser field, namely for arbitrary Rabi frequency. We show how to choose the Rabi frequency in such a way that the Quantum sub-Poissonian nature of the emission process becomes strongest. A lower bound on QQ is found, and simple limiting behaviors are investigated. A non-trivial behavior is obtained in the intermediate modulation limit, when the time scales for spectral diffusion and the life time of the excited state, become similar. A comparison is made between our results, and previous ones derived based on the semi-classical generalized Wiener--Khintchine theorem.Comment: 14 Phys. Rev style pages, 10 figure

    Generating extremal neutrino mixing angles with Higgs family symmetries

    Full text link
    The existence of maximal and minimal mixing angles in the neutrino mixing matrix motivates the search for extensions to the Standard Model that may explain these angles. A previous study (C.I.Low and R.R.Volkas, Phys.Rev.D68,033007(2003)), began a systematic search to find the minimal extension to the Standard Model that explains these mixing angles. It was found that in the minimal extensions to the Standard Model which allow neutrino oscillations, discrete unbroken lepton family symmetries only generate neutrino mixing matrices that are ruled out by experiment. This paper continues the search by investigating all models with two or more Higgs doublets, and an Abelian family symmetry. It is found that discrete Abelian family symmetries permit, but cannot explain, maximal atmospheric mixing, however these models can ensure theta_{13}=0.Comment: Minor modifications, references added, typos corrected. LaTeX, 16 page

    Microscopic formula for transport coefficients of causal hydrodynamics

    Full text link
    The Green-Kubo-Nakano formula should be modified in relativistic hydrodynamics because of the problem of acausality and the breaking of sum rules. In this work, we propose a formula to calculate the transport coefficients of causal hydrodynamics based on the projection operator method. As concrete examples, we derive the expressions for the diffusion coefficient, the shear viscosity coefficient, and corresponding relaxation times.Comment: 4 pages, title was modified, final version published in Phys. Rev.

    Finite Grand Unified Theories and the Quark Mixing Matrix

    Get PDF
    In N = 1 super Yang-Mills theories, under certain conditions satisfied by the spectrum and the Yukawa couplings, the beta functions will vanish to all orders in perturbation theory. We address the generation of realistic quark mixing angles and masses in such finite Grand Unified Theories. Working in the context of finite SUSY SU(5), we present several examples with realistic quark mixing matrices. Non-Abelian discrete symmetries are found to be important in satisfying the conditions for finiteness. Our realistic examples are based on permutation symmetries and the tetrahedral symmetry A4A_4. These examples enable us to address questions such as the decay rate of the proton in finite GUTs.Comment: 16 pages, LaTeX, typos correcte

    Fulde-Ferrell-Larkin-Ovchinnikov State in the absence of a Magnetic Field

    Full text link
    We propose that in a system with pocket Fermi surfaces, a pairing state with a finite total momentum q_tot like the Fulde-Ferrell-Larkin-Ovchinnikov state can be stabilized even without a magnetic field. When a pair is composed of electrons on a pocket Fermi surface whose center is not located at Gamma point, the pair inevitably has finite q_tot. To investigate this possibility, we consider a two-orbital model on a square lattice that can realize pocket Fermi surfaces and we apply fluctuation exchange approximation. Then, by changing the electron number n per site, we indeed find that such superconducting states with finite q_tot are stabilized when the system has pocket Fermi surfaces.Comment: 4 pages, 5 figure

    Quadratic short-range order corrections to the mean-field free energy

    Full text link
    A method for calculating the short-range order part of the free energy of order-disorder systems is proposed. The method is based on the apllication of the cumulant expansion to the exact configurational entropy. Second-order correlation corrections to the mean-field approximation for the free energy are calculated for arbitrary thermodynamic phase and type of interactions. The resulting quadratic approximation for the correlation entropy leads to substantially better values of transition temperatures for the nearest-neighbour cubic Ising ferromagnets.Comment: 7 pages, no figures, IOP-style LaTeX, submitted to J. Phys. Condens. Matter (Letter to the Editor
    corecore