15 research outputs found

    Does Sex Speed Up Evolutionary Rate and Increase Biodiversity?

    Get PDF
    Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity

    Relative size-at-sex-change in parrotfishes across the Caribbean: is there variance in a supposed life-history invariant?

    No full text
    Invariant life-history theory has been used to identify parallels in life histories across diverse taxa. One important invariant life-history model predicts that, given simple assumptions and conditions, size-at-sex-change relative to maximum attainable body size (relative size-at-sex-change, RSSC) will be invariant across populations and species in sequential hermaphrodites. Even if there are broad pecies-wide limits to RSSC, populations could fine-tune RSSC to local conditions and, onsequently, exhibit subtle but important differences in timing of sex change. Previous analyses of the invariant sexchange model have not explicitly considered the potential for meaningful differences in RSSC within the confines of a broader ‘invariance’. Furthermore, these tests differ in their geographical and taxonomic scope, which could account for their conflicting conclusions. We test the model using several populations of three female-first ex-changing Caribbean parrotfish species. We first test for species-wide invariance using traditional log–log regressions and randomisation analyses of population-specific point estimates of RSSC
    corecore