14 research outputs found
Enterovirus a71 infection activates human immune responses and induces pathological changes in humanized mice
10.1128/JVI.01066-18Journal of Virology933Complete
High placental inositol content associated with suppressed pro-adipogenic effects of maternal glycaemia in offspring: the GUSTO cohort
Background/Objectives
Maternal glycaemia promotes fetal adiposity. Inositol, an insulin sensitizer, has been trialled for gestational diabetes prevention. The placenta has been implicated in how maternal hyperglycaemia generates fetal pathophysiology, but no studies have examined whether placental inositol biology is altered with maternal hyperglycaemia, nor whether such alterations impact fetal physiology. We aimed to investigate whether the effects of maternal glycaemia on offspring birthweight and adiposity at birth differed across placental inositol levels.
Methods
Using longitudinal data from the Growing Up in Singapore Towards healthy Outcomes cohort, maternal fasting glucose (FPG) and 2-hour plasma glucose (2hPG) were obtained in pregnant women by a 75-g oral glucose tolerance test around 26 weeks’ gestation. Relative placental inositol was quantified by liquid chromatography-mass spectrometry. Primary outcomes were birthweight (n = 884) and abdominal adipose tissue (AAT) volumes measured by neonatal MRI scanning in a subset (n = 262) of term singleton pregnancies. Multiple linear regression analyses were performed.
Results
Placental inositol was lower in those with higher 2hPG, no exposure to tobacco smoke antenatally, with vaginal delivery and shorter gestation. Positive associations of FPG with birthweight (adjusted β [95% CI] 164.8 g [109.1, 220.5]) and AAT (17.3 ml [11.9, 22.6] per mmol glucose) were observed, with significant interactions between inositol tertiles and FPG in relation to these outcomes (p < 0.05). Stratification by inositol tertiles showed that each mmol/L increase in FPG was associated with increased birthweight and AAT volume among cases within the lowest (birthweight = 174.2 g [81.2, 267.2], AAT = 21.0 ml [13.1, 28.8]) and middle inositol tertiles (birthweight = 202.0 g [103.8, 300.1], AAT = 19.7 ml [9.7, 29.7]). However, no significant association was found among cases within the highest tertile (birthweight = 81.0 g [−21.2, 183.2], AAT = 0.8 ml [−8.4, 10.0]).
Conclusions
High placental inositol may protect the fetus from the pro-adipogenic effects of maternal glycaemia. Studies are warranted to investigate whether prenatal inositol supplementation can increase placental inositol and reduce fetal adiposity
VHL deficiency drives enhancer activation of oncogenes in clear cell renal cell carcinoma
10.1158/2159-8290.CD-17-0375Cancer Discovery7111284-130
VHL deficiency drives enhancer activation of oncogenes in clear cell renal cell carcinoma
Protein-coding mutations in clear cell renal cell carcinoma (ccRCC) have been extensively characterized, frequently involving inactivation of the von Hippel–Lindau (VHL) tumor suppressor. Roles for noncoding cis-regulatory aberrations in ccRCC tumorigenesis, however, remain unclear. Analyzing 10 primary tumor/normal pairs and 9 cell lines across 79 chromatin profiles, we observed pervasive enhancer malfunction in ccRCC, with cognate enhancer-target genes associated with tissue-specific aspects of malignancy. Superenhancer profiling identified ZNF395 as a ccRCC-specific and VHL-regulated master regulator whose depletion causes near-complete tumor elimination in vitro and in vivo. VHL loss predominantly drives enhancer/superenhancer deregulation more so than promoters, with acquisition of active enhancer marks (H3K27ac, H3K4me1) near ccRCC hallmark genes. Mechanistically, VHL loss stabilizes HIF2α–HIF1β heterodimer binding at enhancers, subsequently recruiting histone acetyltransferase p300 without overtly affecting preexisting promoter–enhancer interactions. Subtype-specific driver mutations such as VHL may thus propagate unique pathogenic dependencies in ccRCC by modulating epigenomic landscapes and cancer gene expression. Significance: Comprehensive epigenomic profiling of ccRCC establishes a compendium of somatically altered cis-regulatory elements, uncovering new potential targets including ZNF395, a ccRCC master regulator. Loss of VHL, a ccRCC signature event, causes pervasive enhancer malfunction, with binding of enhancer-centric HIF2α and recruitment of histone acetyltransferase p300 at preexisting lineage-specific promoter–enhancer complexes.</p