16 research outputs found

    Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil

    Get PDF
    Biochar has been proposed as a tool to enhance phytostabilisation of contaminated soils but little data are available to illustrate the direct effect on roots in contaminated soils. This work aimed to investigate specific root traits and to assess the effect of biochar amendment on contaminant availability. Amendment with two different types of biochar, pine woodchip and olive tree pruning, was assessed in a rhizobox experiment with maize planted in a soil contaminated with significant levels of copper and arsenic. Amendment was found to significantly improve root traits compared to the control soil, particularly root mass density and root length density. Copper uptake to plants and ammonium sulphate extractable copper was significantly less in the biochar amended soils. Arsenic uptake and extractability varied with type of biochar used but was not considered to be the limiting factor affecting root and shoot development. Root establishment in contaminated soils can be enhanced by biochar amendment but choice of biochar is key to maximising soil improvement and controlling contaminant availability

    The Early Evolution of Biting–Chewing Performance in Hexapoda

    Get PDF
    Insects show a plethora of different mandible shapes. It was advocated that these mandible shapes are mainly a function of different feeding habits. This hypothesis was tested on a larger sampling of non-holometabolan biting–chewing insects with additional tests to understand the interplay of mandible function, feeding guild, and phylogeny. The results show that at the studied systematic level, variation in mandible biting–chewing effectivity is regulated to a large extent by phylogenetic history and the configuration of the mandible joints rather than the food preference of a given taxon. Additionally, lineages with multiple mandibular joints such as primary wingless hexapods show a wider functional space occupation of mandibular effectivity than dicondylic insects (= silverfish + winged insects) at significantly different evolutionary rates. The evolution and occupation of a comparably narrow functional performance space of dicondylic insects is surprising given the low effectivity values of this food uptake solution. Possible reasons for this relative evolutionary “stasis” are discussed
    corecore