315 research outputs found

    A virtual training simulator for learning cataract surgery with phacoemulsification

    Get PDF
    Author name used in this publication: Fu-Lai Chung2009-2010 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Relationship between Environmental Phthalate Exposure and the Intelligence of School-Age Children

    Get PDF
    BACKGROUND: Concern over phthalates has emerged because of their potential toxicity to humans. OBJECTIVE: We investigated the relationship between the urinary concentrations of phthalate metabolites and children`s intellectual functioning. METHODS: This study enrolled 667 children at nine elementary schools in five South Korean cities. A cross-sectional examination of urine phthalate concentrations was performed, and scores on neuro-psychological tests were obtained from both the children and their mothers. RESULTS: We measured mono-2-ethylhexyl phthalate (MEHP) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), both metabolites of di(2-ethylhexyl)phthalate (DEHP), and mono-n-butyl phthalate (MBP), a metabolite of dibutyl phthalate (DBP), in urine samples. The geometric mean (ln) concentrations of MEHP, MEOHP, and MBP were 21.3 mu g/L [geometric SD (GSD) = 2.2 mu g/L; range, 0.5-445.4], 18.0 mu g/L (GSD = 2.4; range, 0.07-291.1), and 48.9 mu g/L (GSD = 2.2; range, 2.1-1645.5), respectively. After adjusting for demographic and developmental covariates, the Full Scale IQ and Verbal IQ scores were negatively associated with DEHP metabolites but not with DBP metabolites. We also found a significant negative relationship between the urine concentrations of the metabolites of DEHP and DBP and children`s vocabulary subscores. After controlling for maternal IQ, a significant inverse relationship between DEHP metabolites and vocabulary subscale score remained. Among boys, we found a negative association between increasing MEHP phthalate concentrations and the sum of DEHP metabolite concentrations and Wechsler Intelligence Scale for Children vocabulary score; however, among girls, we found no significant association between these variables. CONCLUSION: Controlling for maternal IQ and other covariates, the results show an inverse relationship between phthalate metabolites and IQ scores; however, given the limitations in cross-sectional epidemiology, prospective studies are needed to fully explore these associations.This work was funded by the Eco-Technopia 21 project of Korea Institute of Environmental Science and Technology (091-081-059).Cho SC, 2010, J CHILD PSYCHOL PSYC, V51, P1050, DOI 10.1111/j.1469-7610.2010.02250.xKim BN, 2009, BIOL PSYCHIAT, V66, P958, DOI 10.1016/j.biopsych.2009.07.034Tanida T, 2009, TOXICOL LETT, V189, P40, DOI 10.1016/j.toxlet.2009.04.005Ghisari M, 2009, TOXICOL LETT, V189, P67, DOI 10.1016/j.toxlet.2009.05.004Barnett JH, 2009, AM J PSYCHIAT, V166, P909, DOI 10.1176/appi.ajp.2009.08081251Kim Y, 2009, NEUROTOXICOLOGY, V30, P564, DOI 10.1016/j.neuro.2009.03.012Engel SM, 2009, NEUROTOXICOLOGY, V30, P522, DOI 10.1016/j.neuro.2009.04.001Kamrin MA, 2009, J TOXICOL ENV HEAL B, V12, P157, DOI 10.1080/10937400902729226Brown JS, 2009, SCHIZOPHRENIA BULL, V35, P256, DOI 10.1093/schbul/sbm147Bellinger DC, 2008, NEUROTOXICOLOGY, V29, P828, DOI 10.1016/j.neuro.2008.04.005Wolff MS, 2008, ENVIRON HEALTH PERSP, V116, P1092, DOI 10.1289/ehp.11007van Neerven S, 2008, PROG NEUROBIOL, V85, P433, DOI 10.1016/j.pneurobio.2008.04.006Hatch EE, 2008, ENVIRON HEALTH-GLOB, V7, DOI 10.1186/1476-069X-7-27Zevalkink J, 2008, J GENET PSYCHOL, V169, P72Kolarik B, 2008, ENVIRON HEALTH PERSP, V116, P98, DOI 10.1289/ehp.10498SATHYANARAYANA S, 2008, CURR PROBL PEDIAT AD, V38, P34KHO YL, 2008, J ENV HLTH SCI, V34, P271Huang PC, 2007, HUM REPROD, V22, P2715, DOI 10.1093/humrep/dem205Janjua NR, 2007, ENVIRON SCI TECHNOL, V41, P5564, DOI 10.1021/es0628755Meeker JD, 2007, ENVIRON HEALTH PERSP, V115, P1029, DOI 10.1289/ehp.9852Fromme H, 2007, INT J HYG ENVIR HEAL, V210, P21, DOI 10.1016/j.ijheh.2006.09.005Xu Y, 2007, ARCH TOXICOL, V81, P57, DOI 10.1007/s00204-006-0143-8Pereira C, 2007, ACTA HISTOCHEM, V109, P29, DOI 10.1016/j.acthis.2006.09.008Hauser R, 2006, EPIDEMIOLOGY, V17, P682, DOI 10.1097/01.ede.0000235996.89953.d7Zhu DF, 2006, BRAIN, V129, P2923, DOI 10.1093/brain/awl215Andrade AJM, 2006, TOXICOLOGY, V227, P185, DOI 10.1016/j.tox.2006.07.022Lottrup G, 2006, INT J ANDROL, V29, P172, DOI 10.1111/j.1365-2605.2005.00642.xBreous E, 2005, MOL CELL ENDOCRINOL, V244, P75, DOI 10.1016/j.mce.2005.06.009Wenzel A, 2005, MOL CELL ENDOCRINOL, V244, P63, DOI 10.1016/j.mce.2005.02.008Kato K, 2005, ANAL CHEM, V77, P2985, DOI 10.1021/ac0481248Tanaka T, 2005, FOOD CHEM TOXICOL, V43, P581, DOI 10.1016/j.fct.2005.01.001Duty SM, 2005, HUM REPROD, V20, P604, DOI 10.1093/humrep/deh656Kota BP, 2005, PHARMACOL RES, V51, P85, DOI 10.1016/j.phrs.2004.07.012Hays T, 2005, CARCINOGENESIS, V26, P219, DOI 10.1093/carcin/bgh285Hauser R, 2004, ENVIRON HEALTH PERSP, V112, P1734, DOI 10.1289/ehp.7212Bornehag CG, 2004, ENVIRON HEALTH PERSP, V112, P1393, DOI 10.1289/ehp.7187Ishido M, 2004, J NEUROCHEM, V91, P69, DOI 10.1111/j.1471-4159.2004.02696.xMink PJ, 2004, EPIDEMIOLOGY, V15, P385, DOI 10.1097/01.ede.0000128402.86336.7eBellinger DC, 2004, EPIDEMIOLOGY, V15, P383, DOI 10.1097/01.ede.0000129525.15064.a4Shea KM, 2003, PEDIATRICS, V111, P1467Tanaka T, 2002, FOOD CHEM TOXICOL, V40, P1499, DOI 10.1016/S0278-6915(02)00073-XHoppin JA, 2002, ENVIRON HEALTH PERSP, V110, P515SATTLER JM, 2001, ASSESSMENT CHILDRENRice D, 2000, ENVIRON HEALTH PERSP, V108, P511Bellinger DC, 2000, NEUROTOXICOL TERATOL, V22, P133LIM YR, 2000, KOR J CLIN PSYCHOL, V19, P563Braissant O, 1998, ENDOCRINOLOGY, V139, P2748Peters JM, 1997, CARCINOGENESIS, V18, P2029Baldini IM, 1997, PROG NEURO-PSYCHOPH, V21, P925Roberts RA, 1997, FUND APPL TOXICOL, V38, P107PARK KS, 1996, DEV KEDI WISC INDIVIMONZANI F, 1993, CLIN INVESTIGATOR, V71, P367SILVERSTEIN AB, 1990, J CLIN PSYCHOL, V46, P333HINTON RH, 1986, ENVIRON HEALTH PERSP, V70, P195KIM MK, 1986, SEOUL J PSYCHIAT, V11, P194KAUFMAN AS, 1976, CONTEMP EDUC PSYCHOL, V1, P1801

    Intrathecal injection of human umbilical cord blood-derived mesenchymal stem cells for the treatment of basilar artery dissection: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Basilar artery dissection is a rare occurrence, and is significantly associated with morbidity and mortality. To the best of our knowledge, we report the first case of basilar artery dissection treated with mesenchymal stem cells.</p> <p>Case presentation</p> <p>We present the case of a 17-year-old Korean man who was diagnosed with basilar artery dissection. Infarction of the bilateral pons, midbrain and right superior cerebellum due to his basilar artery dissection was partially recanalized by intrathecal injection of human umbilical cord blood-derived mesenchymal stem cells. No immunosuppressants were given to our patient, and human leukocyte antigen alloantibodies were not detected after cell therapy.</p> <p>Conclusions</p> <p>This case indicates that intrathecal injections of mesenchymal stem cells can be used in the treatment of basilar artery dissection.</p

    Icariside II Induces Apoptosis in U937 Acute Myeloid Leukemia Cells: Role of Inactivation of STAT3-Related Signaling

    Get PDF
    Background: The aim of this study is to determine anti-cancer effect of Icariside II purified from the root of Epimedium koreanum Nakai on human acute myeloid leukemia (AML) cell line U937. Methodology/Principal Findings Icariside II blocked the growth U937 cells in a dose- and time-dependent manner. In this anti-proliferation process, this herb compound rendered the cells susceptible to apoptosis, manifested by enhanced accumulation of sub-G1 cell population and increased the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells. Icariside II was able to activate caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP) in a time-dependent manner. Concurrently, the anti-apoptotic proteins, such as bcl-xL and survivin in U937 cells, were downregulated by Icariside II. In addition, Icariside II could inhibit STAT3 phosphorylation and function and subsequently suppress the activation of Janus activated kinase 2 (JAK2), the upstream activators of STAT3, in a dose- and time-dependent manner. Icariside II also enhanced the expression of protein tyrosine phosphatase (PTP) SH2 domain-containing phosphatase (SHP)-1, and the addition of sodium pervanadate (a PTP inhibitor) prevented Icariside II-induced apoptosis as well as STAT3 inactivation in STAT3 positive U937 cells. Furthermore, silencing SHP-1 using its specific siRNA significantly blocked STAT3 inactivation and apoptosis induced by Icariside II in U937 cells. Conclusions/Significance: Our results demonstrated that via targeting STAT3-related signaling, Icariside II sensitizes U937 cells to apoptosis and perhaps serves as a potent chemotherapeutic agent for AML

    Gene Expression Pattern in Transmitochondrial Cytoplasmic Hybrid Cells Harboring Type 2 Diabetes-Associated Mitochondrial DNA Haplogroups

    Get PDF
    Decreased mitochondrial function plays a pivotal role in the pathogenesis of type 2 diabetes mellitus (T2DM). Recently, it was reported that mitochondrial DNA (mtDNA) haplogroups confer genetic susceptibility to T2DM in Koreans and Japanese. Particularly, mtDNA haplogroup N9a is associated with a decreased risk of T2DM, whereas haplogroups D5 and F are associated with an increased risk. To examine functional consequences of these haplogroups without being confounded by the heterogeneous nuclear genomic backgrounds of different subjects, we constructed transmitochondrial cytoplasmic hybrid (cybrid) cells harboring each of the three haplogroups (N9a, D5, and F) in a background of a shared nuclear genome. We compared the functional consequences of the three haplogroups using cell-based assays and gene expression microarrays. Cell-based assays did not detect differences in mitochondrial functions among the haplogroups in terms of ATP generation, reactive oxygen species production, mitochondrial membrane potential, and cellular dehydrogenase activity. However, differential expression and clustering analyses of microarray data revealed that the three haplogroups exhibit a distinctive nuclear gene expression pattern that correlates with their susceptibility to T2DM. Pathway analysis of microarray data identified several differentially regulated metabolic pathways. Notably, compared to the T2DM-resistant haplogroup N9a, the T2DM-susceptible haplogroup F showed down-regulation of oxidative phosphorylation and up-regulation of glycolysis. These results suggest that variations in mtDNA can affect the expression of nuclear genes regulating mitochondrial functions or cellular energetics. Given that impaired mitochondrial function caused by T2DM-associated mtDNA haplogroups is compensated by the nuclear genome, we speculate that defective nuclear compensation, under certain circumstances, might lead to the development of T2DM

    Catheter-associated bacteremia by Mycobacterium senegalense in Korea

    Get PDF
    BACKGROUND: Rapidly growing mycobacteria is recognized as one of the causative agents of catheter-related infections, especially in immunocompromised hosts. To date, however, Mycobacterium senegalense, which was known as the principal pathogen of bovine farcy, has not been reported in human infection. CASE PRESENTATION: We describe the first case of human infection by M. senegalense, which has caused catheter-related bloodstream infection in a cancer patient in Korea. The microorganism was identified by the 16S rRNA gene, rpoB, and 16S-23S rRNA gene internal transcribed spacer (ITS) sequence analyses. CONCLUSION: Our first report of catheter-associated bacteremia caused by M. senegalense suggests the zoonotic nature of this species and indicates the expansion of mycobacterial species relating to human infection. M. senegalense should be considered as one of the causes of human infections in the clinical practice

    Chromosomal Inversions between Human and Chimpanzee Lineages Caused by Retrotransposons

    Get PDF
    The long interspersed element-1 (LINE-1 or L1) and Alu elements are the most abundant mobile elements comprising 21% and 11% of the human genome, respectively. Since the divergence of human and chimpanzee lineages, these elements have vigorously created chromosomal rearrangements causing genomic difference between humans and chimpanzees by either increasing or decreasing the size of genome. Here, we report an exotic mechanism, retrotransposon recombination-mediated inversion (RRMI), that usually does not alter the amount of genomic material present. Through the comparison of the human and chimpanzee draft genome sequences, we identified 252 inversions whose respective inversion junctions can clearly be characterized. Our results suggest that L1 and Alu elements cause chromosomal inversions by either forming a secondary structure or providing a fragile site for double-strand breaks. The detailed analysis of the inversion breakpoints showed that L1 and Alu elements are responsible for at least 44% of the 252 inversion loci between human and chimpanzee lineages, including 49 RRMI loci. Among them, three RRMI loci inverted exonic regions in known genes, which implicates this mechanism in generating the genomic and phenotypic differences between human and chimpanzee lineages. This study is the first comprehensive analysis of mobile element bases inversion breakpoints between human and chimpanzee lineages, and highlights their role in primate genome evolution

    EGb761, a Ginkgo Biloba Extract, Is Effective Against Atherosclerosis In Vitro, and in a Rat Model of Type 2 Diabetes

    Get PDF
    BACKGROUND: EGb761, a standardized Ginkgo biloba extract, has antioxidant and antiplatelet aggregation and thus might protect against atherosclerosis. However, molecular and functional properties of EGb761 and its major subcomponents have not been well characterized. We investigated the effect of EGb761 and its major subcomponents (bilobalide, kaemferol, and quercetin) on preventing atherosclerosis in vitro, and in a rat model of type 2 diabetes. METHODS AND RESULTS: EGb761 (100 and 200 mg/kg) or normal saline (control) were administered to Otsuka Long-Evans Tokushima Fatty rats, an obese insulin-resistant rat model, for 6 weeks (from 3 weeks before to 3 weeks after carotid artery injury). Immunohistochemical staining was performed to investigate cell proliferation and apoptosis in the injured arteries. Cell migration, caspase-3 activity and DNA fragmentation, monocyte adhesion, and ICAM-1/VCAM-1 levels were explored in vitro. Treatment with EGb761 dose-dependently reduced intima-media ratio, proliferation of vascular smooth muscle cells (VSMCs) and induced greater apoptosis than the controls. Proliferation and migration of VSMCs in vitro were also decreased by the treatment of EGb761. Glucose homeostasis and circulating adiponectin levels were improved, and plasma hsCRP concentrations were decreased in the treatment groups. Caspase-3 activity and DNA fragmentation increased while monocyte adhesion and ICAM-1/VCAM-1 levels decreased significantly. Among subcomponents of EGb761, kaemferol and quercetin reduced VSMC migration and increased caspase activity. CONCLUSIONS: EGb761 has a protective role in the development of atherosclerosis and is a potential therapeutic agent for preventing atherosclerosis
    • …
    corecore