40 research outputs found

    Setting an Optimal α That Minimizes Errors in Null Hypothesis Significance Tests

    Get PDF
    Null hypothesis significance testing has been under attack in recent years, partly owing to the arbitrary nature of setting α (the decision-making threshold and probability of Type I error) at a constant value, usually 0.05. If the goal of null hypothesis testing is to present conclusions in which we have the highest possible confidence, then the only logical decision-making threshold is the value that minimizes the probability (or occasionally, cost) of making errors. Setting α to minimize the combination of Type I and Type II error at a critical effect size can easily be accomplished for traditional statistical tests by calculating the α associated with the minimum average of α and ÎČ at the critical effect size. This technique also has the flexibility to incorporate prior probabilities of null and alternate hypotheses and/or relative costs of Type I and Type II errors, if known. Using an optimal α results in stronger scientific inferences because it estimates and minimizes both Type I errors and relevant Type II errors for a test. It also results in greater transparency concerning assumptions about relevant effect size(s) and the relative costs of Type I and II errors. By contrast, the use of α = 0.05 results in arbitrary decisions about what effect sizes will likely be considered significant, if real, and results in arbitrary amounts of Type II error for meaningful potential effect sizes. We cannot identify a rationale for continuing to arbitrarily use α = 0.05 for null hypothesis significance tests in any field, when it is possible to determine an optimal α

    Emotional Engineers: Toward Morally Responsible Design

    Get PDF
    Engineers are normally seen as the archetype of people who make decisions in a rational and quantitative way. However, technological design is not value neutral. The way a technology is designed determines its possibilities, which can, for better or for worse, have consequences for human wellbeing. This leads various scholars to the claim that engineers should explicitly take into account ethical considerations. They are at the cradle of new technological developments and can thereby influence the possible risks and benefits more directly than anybody else. I have argued elsewhere that emotions are an indispensable source of ethical insight into ethical aspects of risk. In this paper I will argue that this means that engineers should also include emotional reflection into their work. This requires a new understanding of the competencies of engineers: they should not be unemotional calculators; quite the opposite, they should work to cultivate their moral emotions and sensitivity, in order to be engaged in morally responsible engineering

    Contrasting Cases: The Lotka-Volterra Model Times Three

    Get PDF
    How do philosophers of science make use of historical case studies? Are their accounts of historical cases purpose-built and lacking in evidential strength as a result of putting forth and discussing philosophical positions? We will study these questions through the examination of three different philosophical case studies. All of them focus on modeling and on Vito Volterra, contrasting his work to that of other theoreticians. We argue that the worries concerning the evidential role of historical case studies in philosophy are partially unfounded, and the evidential and hermeneutical roles of case studies need not be played against each other. In philosophy of science, case studies are often tied to conceptual and theoretical analysis and development, rendering their evidential and theoretic/hermeneutic roles intertwined. Moreover, the problems of resituating or generalizing local knowledge are not specific to philosophy of science but commonplace in many scientific practices—which show similarities to the actual use of historical case studies by philosophers of science
    corecore