218 research outputs found

    Influences of club connectedness among young adults in Western Australian community-based sports clubs

    Get PDF
    Background: Along with physical benefits, community-based sport provides opportunities to enhance connectedness, an important protective factor of social and emotional health. However, young Australians participating in sport have been found to drink alcohol at higher levels than their non-sporting peers, and many clubs serve unhealthy food and beverages. This study explored the association between the dependent variable, level of alcohol consumption (AUDIT-C) and connectedness to club and other health behaviours among young people aged 18-30 years who play club sport in Western Australia. Methods: An online cross sectional survey measured levels of alcohol consumption (AUDIT-C), alcohol-related harm, connectedness (including volunteering and team cohesion), mental wellbeing, healthy food options and club sponsorship among young adults aged 18-30 years involved in sports clubs in Western Australia (n = 242). Relationships and association between the dependent variable (AUDIT-C) and independent variables were assessed. Results: Male sportspeople were more likely to drink alcohol at high-risk levels than females (p <.001), and respondents belonging to a club that received alcohol-related sponsorship were more likely to drink at high-risk levels (p =.019). Females were significantly more likely to want healthy food and beverage options provided at their clubs (p = 0.011). When all factors were considered team cohesion (p = 0.02), alcohol expectations (p = <.001), occurrences of experienced alcohol-related harm (p = <.001) and length of club membership (p = 0.18) were significant predictors of high-risk AUDIT-C (R 2 =.34, adjusted R 2 =.33, F (4, 156) = 20.43, p = <.001). High-risk AUDIT-C and club connectedness predicted strong team cohesion (R 2 =.39, adjusted R 2 =.39, F (2, 166) = 53.74, p = <.001). Conclusions: Findings from this study may inform policy and practice to enhance healthy behaviours among young adults participating in community sports clubs in Australia and other countries

    Rearrangement of Retinogeniculate Projection Patterns after Eye-Specific Segregation in Mice

    Get PDF
    It has been of interest whether and when the rearrangement of neuronal circuits can be induced after projection patterns are formed during development. Earlier studies using cats reported that the rearrangement of retinogeniculate projections could be induced even after eye-specific segregation has occurred, but detailed and quantitative characterization of this rearrangement has been lacking. Here we delineate the structural changes of retinogeniculate projections in the C57BL/6 mouse in response to monocular enucleation (ME) after eye-specific segregation. When ME was performed after eye-specific segregation, rearrangement of retinogeniculate axons in the dorsal lateral geniculate nucleus (dLGN) was observed within 5 days. Although this rearrangement was observed both along the dorsomedial-ventrolateral and outer-inner axes in the dLGN, it occurred more rapidly along the outer-inner axis. We also examined the critical period for this rearrangement and found that the rearrangement became almost absent by the beginning of the critical period for ocular dominance plasticity in the primary visual cortex. Taken together, our findings serve as a framework for the assessment of phenotypes of genetically altered mouse strains as well as provide insights into the mechanisms underlying the rearrangement of retinogeniculate projections

    Ecoregional Analysis of Nearshore Sea-Surface Temperature in the North Pacific

    Get PDF
    The quantification and description of sea surface temperature (SST) is critically important because it can influence the distribution, migration, and invasion of marine species; furthermore, SSTs are expected to be affected by climate change. To better understand present temperature regimes, we assembled a 29-year nearshore time series of mean monthly SSTs along the North Pacific coastline using remotely-sensed satellite data collected with the Advanced Very High Resolution Radiometer (AVHRR) instrument. We then used the dataset to describe nearshore (<20 km offshore) SST patterns of 16 North Pacific ecoregions delineated by the Marine Ecoregions of the World (MEOW) hierarchical schema. Annual mean temperature varied from 3.8Β°C along the Kamchatka ecoregion to 24.8Β°C in the Cortezian ecoregion. There are smaller annual ranges and less variability in SST in the Northeast Pacific relative to the Northwest Pacific. Within the 16 ecoregions, 31–94% of the variance in SST is explained by the annual cycle, with the annual cycle explaining the least variation in the Northern California ecoregion and the most variation in the Yellow Sea ecoregion. Clustering on mean monthly SSTs of each ecoregion showed a clear break between the ecoregions within the Warm and Cold Temperate provinces of the MEOW schema, though several of the ecoregions contained within the provinces did not show a significant difference in mean seasonal temperature patterns. Comparison of these temperature patterns shared some similarities and differences with previous biogeographic classifications and the Large Marine Ecosystems (LMEs). Finally, we provide a web link to the processed data for use by other researchers

    MyD88 Is Required for Protection from Lethal Infection with a Mouse-Adapted SARS-CoV

    Get PDF
    A novel human coronavirus, SARS-CoV, emerged suddenly in 2003, causing approximately 8000 human cases and more than 700 deaths worldwide. Since most animal models fail to faithfully recapitulate the clinical course of SARS-CoV in humans, the virus and host factors that mediate disease pathogenesis remain unclear. Recently, our laboratory and others developed a recombinant mouse-adapted SARS-CoV (rMA15) that was lethal in BALB/c mice. In contrast, intranasal infection of young 10-week-old C57BL/6 mice with rMA15 results in a nonlethal infection characterized by high titer replication within the lungs, lung inflammation, destruction of lung tissue, and loss of body weight, thus providing a useful model to identify host mediators of protection. Here, we report that mice deficient in MyD88 (MyD88βˆ’/βˆ’), an adapter protein that mediates Toll-like receptor (TLR), IL-1R, and IL-18R signaling, are far more susceptible to rMA15 infection. The genetic absence of MyD88 resulted in enhanced pulmonary pathology and greater than 90% mortality by day 6 post-infection. MyD88βˆ’/βˆ’ mice had significantly higher viral loads in lung tissue throughout the course of infection. Despite increased viral loads, the expression of multiple proinflammatory cytokines and chemokines within lung tissue and recruitment of inflammatory monocytes/macrophages to the lung was severely impaired in MyD88βˆ’/βˆ’ mice compared to wild-type mice. Furthermore, mice deficient in chemokine receptors that contribute to monocyte recruitment to the lung were more susceptible to rMA15-induced disease and exhibited severe lung pathology similar to that seen in MyD88βˆ’/βˆ’mice. These data suggest that MyD88-mediated innate immune signaling and inflammatory cell recruitment to the lung are required for protection from lethal rMA15 infection

    Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic

    Get PDF
    Metagenomic data sets were generated from samples collected along a coastal to open ocean transect between Southern California Bight and California Current waters during a seasonal upwelling event, providing an opportunity to examine the impact of episodic pulses of cold nutrient-rich water into surface ocean microbial communities. The data set consists of ∼5.8 million predicted proteins across seven sites, from three different size classes: 0.1–0.8, 0.8–3.0 and 3.0–200.0 μm. Taxonomic and metabolic analyses suggest that sequences from the 0.1–0.8 μm size class correlated with their position along the upwelling mosaic. However, taxonomic profiles of bacteria from the larger size classes (0.8–200 μm) were less constrained by habitat and characterized by an increase in Cyanobacteria, Bacteroidetes, Flavobacteria and double-stranded DNA viral sequences. Functional annotation of transmembrane proteins indicate that sites comprised of organisms with small genomes have an enrichment of transporters with substrate specificities for amino acids, iron and cadmium, whereas organisms with larger genomes have a higher percentage of transporters for ammonium and potassium. Eukaryotic-type glutamine synthetase (GS) II proteins were identified and taxonomically classified as viral, most closely related to the GSII in Mimivirus, suggesting that marine Mimivirus-like particles may have played a role in the transfer of GSII gene functions. Additionally, a Planctomycete bloom was sampled from one upwelling site providing a rare opportunity to assess the genomic composition of a marine Planctomycete population. The significant correlations observed between genomic properties, community structure and nutrient availability provide insights into habitat-driven dynamics among oligotrophic versus upwelled marine waters adjoining each other spatially

    Stakeholder involvement in systematic reviews:a scoping review

    Get PDF
    Abstract Background There is increasing recognition that it is good practice to involve stakeholders (meaning patients, the public, health professionals and others) in systematic reviews, but limited evidence about how best to do this. We aimed to document the evidence-base relating to stakeholder involvement in systematic reviews and to use this evidence to describe how stakeholders have been involved in systematic reviews. Methods We carried out a scoping review, following a published protocol. We searched multiple electronic databases (2010–2016), using a stepwise searching approach, supplemented with hand searching. Two authors independently screened and discussed the first 500 abstracts and, after clarifying selection criteria, screened a further 500. Agreement on screening decisions was 97%, so screening was done by one reviewer only. Pre-planned data extraction was completed, and the comprehensiveness of the description of methods of involvement judged. Additional data extraction was completed for papers judged to have most comprehensive descriptions. Three stakeholder representatives were co-authors for this systematic review. Results We included 291 papers in which stakeholders were involved in a systematic review. Thirty percent involved patients and/or carers. Thirty-two percent were from the USA, 26% from the UK and 10% from Canada. Ten percent (32 reviews) were judged to provide a comprehensive description of methods of involving stakeholders. Sixty-nine percent (22/32) personally invited people to be involved; 22% (7/32) advertised opportunities to the general population. Eighty-one percent (26/32) had between 1 and 20 face-to-face meetings, with 83% of these holding ≀ 4 meetings. Meetings lasted 1Β h to Β½Β day. Nineteen percent (6/32) used a Delphi method, most often involving three electronic rounds. Details of ethical approval were reported by 10/32. Expenses were reported to be paid to people involved in 8/32 systematic reviews. Discussion/conclusion We identified a relatively large number (291) of papers reporting stakeholder involvement in systematic reviews, but the quality of reporting was generally very poor. Information from a subset of papers judged to provide the best descriptions of stakeholder involvement in systematic reviews provide examples of different ways in which stakeholders have been involved in systematic reviews. These examples arguably currently provide the best available information to inform and guide decisions around the planning of stakeholder involvement within future systematic reviews. This evidence has been used to develop online learning resources. Systematic review registration The protocol for this systematic review was published on 21 April 2017. Publication reference: Pollock A, Campbell P, Struthers C, Synnot A, Nunn J, Hill S, Goodare H, Watts C, Morley R: Stakeholder involvement in systematic reviews: a protocol for a systematic review of methods, outcomes and effects. Research Involvement and Engagement 2017, 3:9. https://doi.org/10.1186/s40900-017-0060-4

    Hypoxia Regulates BMP4 Expression in the Murine Spleen during the Recovery from Acute Anemia

    Get PDF
    Bone marrow erythropoiesis is primarily homeostatic, producing new erythrocytes at a constant rate. However at times of acute anemia, new erythrocytes must be rapidly produced much faster than bone marrow steady state erythropoiesis. At these times stress erythropoiesis predominates. Stress erythropoiesis occurs in the fetal liver during embryogenesis and in the adult spleen and liver. In adult mice, stress erythropoiesis utilizes a specialized population of stress erythroid progenitors that are resident in the spleen. In response to acute anemia, these progenitors rapidly expand and differentiate in response to three signals, BMP4, SCF and hypoxia. In absence of acute anemic stress, two of these signals, BMP4 and hypoxia, are not present and the pathway is not active. The initiating event in the activation of this pathway is the up-regulation of BMP4 expression in the spleen.In this paper we analyze the regulation of BMP4 expression in the spleen by hypoxia. Using stromal cell lines, we establish a role for hypoxia transcription factor HIFs (Hypoxia Inducible Factors) in the transcription of BMP4. We identified putative Hypoxia Responsive Elements (HREs) in the BMP4 gene using bioinformatics. Analysis of these elements showed that in vivo, Hif2alpha binds two cis regulatory sites in the BMP4 gene, which regulate BMP4 expression during the recovery from acute anemia.These data show that hypoxia plays a key role in initiating the BMP4 dependent stress erythropoiesis pathway by regulating BMP4 expression

    Classification of Camellia (Theaceae) Species Using Leaf Architecture Variations and Pattern Recognition Techniques

    Get PDF
    Leaf characters have been successfully utilized to classify Camellia (Theaceae) species; however, leaf characters combined with supervised pattern recognition techniques have not been previously explored. We present results of using leaf morphological and venation characters of 93 species from five sections of genus Camellia to assess the effectiveness of several supervised pattern recognition techniques for classifications and compare their accuracy. Clustering approach, Learning Vector Quantization neural network (LVQ-ANN), Dynamic Architecture for Artificial Neural Networks (DAN2), and C-support vector machines (SVM) are used to discriminate 93 species from five sections of genus Camellia (11 in sect. Furfuracea, 16 in sect. Paracamellia, 12 in sect. Tuberculata, 34 in sect. Camellia, and 20 in sect. Theopsis). DAN2 and SVM show excellent classification results for genus Camellia with DAN2's accuracy of 97.92% and 91.11% for training and testing data sets respectively. The RBF-SVM results of 97.92% and 97.78% for training and testing offer the best classification accuracy. A hierarchical dendrogram based on leaf architecture data has confirmed the morphological classification of the five sections as previously proposed. The overall results suggest that leaf architecture-based data analysis using supervised pattern recognition techniques, especially DAN2 and SVM discrimination methods, is excellent for identification of Camellia species
    • …
    corecore