54 research outputs found

    Numerical modelling of grain refinement around highly reactive interfaces in processing of nanocrystallised multilayered metallic materials by duplex technique

    Get PDF
    Microstructure evolution around highly reactive interfaces in processing of nanocrystallised multilayered metallic materials have been investigated and discussed in the present work. Conditions leading to grain refinement during co-rolling stage of the duplex processing technique are analysed using the multi-level finite element based numerical model combined with three-dimensional frontal cellular automata. The model was capable to simulate development of grain boundaries and changes of the boundary disorientation angle within the metal structure taking into account crystal plasticity formulation. Appearance of a large number of structural elements, identified as dislocation cells, sub-grains and new grains, has been identified within the metal structure as a result of metal flow disturbance and consequently inhomogeneous deformation around oxide islets at the interfaces during the co-rolling stage. These areas corresponded to the locations of shear bands observed experimentally using SEM-EBSD analysis. The obtained results illustrate a significant potential of the proposed modelling approach for quantitative analysis and optimisation of the highly refined non-homogeneous microstructures formed around the oxidised interfaces during processing of such laminated materials

    Domestic exposure to volatile organic compounds in relation to asthma and allergy in children and adults

    No full text
    Over the past decades, the prevalence of asthma, allergic disease and atopy has increased significantly and in parallel with the increased use of products and materials emitting volatile organic compounds (VOCs) in the indoor environment. The purpose of this review is to examine the evidence of the relationship between quantitatively measured domestic exposure to VOCs and allergic diseases and allergy in children and adults. Sources, potential immune-inflammatory mechanisms and risks for development and severity of asthma and allergy have been addressed. Available evidence is based on studies that have mainly used observational designs of variable quality. Total, aromatic, aliphatic, microbial VOCs and aldehydes have been the most widely investigated VOC classes, with formaldehyde being the most commonly examined single compound. Overall, the evidence is inadequate to draw any firm conclusions. However, given indicative evidence from a few high-quality studies and significant potential for improvements in asthma outcomes in those with established disease, there is a need to consider undertaking further investigation of the relationship between domestic VOC exposure and asthma/allergy outcomes that should encompass both high-quality, robust observational studies and ultimately clinical trials assessing the impact of interventions that aim to reduce VOC exposure in children and adults with asthma
    • 

    corecore