235 research outputs found

    X-ray interferometry with transmissive beam combiners for ultra-high angular resolution astronomy

    Full text link
    Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.Comment: To be published in "Experimental Astronomy

    Prospect of determining the Dirac/Majorana state of neutrino by Multi-OWL experiment

    Full text link
    We consider the non-radiative two body decay of a neutrino to a daughter neutrino with degraded energy and a very light particle (Majoron). Ultrahigh energy neutrinos from an astrophysical source like a Gamma Ray Burst undergoing this decay process are found to produce different number of events in the detector depending on whether they are Majorana or Dirac particles. The next generation large scale experiments like Multi-OWL is expected to provide us an accurate determination of the flux of neutrinos from astrophysical sources and this may enable us to distinguish between the Dirac and Majorana nature of neutrino.Comment: 18 pages latex, no figure. Journal of Phys. G in pres

    POEMMA: Probe Of Extreme Multi-Messenger Astrophysics

    Get PDF
    The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) mission is being designed to establish charged-particle astronomy with ultra-high energy cosmic rays (UHECRs) and to observe cosmogenic tau neutrinos (CTNs). The study of UHECRs and CTNs from space will yield orders-of-magnitude increase in statistics of observed UHECRs at the highest energies, and the observation of the cosmogenic flux of neutrinos for a range of UHECR models. These observations should solve the long-standing puzzle of the origin of the highest energy particles ever observed, providing a new window onto the most energetic environments and events in the Universe, while studying particle interactions well beyond accelerator energies. The discovery of CTNs will help solve the puzzle of the origin of UHECRs and begin a new field of Astroparticle Physics with the study of neutrino properties at ultra-high energies.Comment: 8 pages, in the Proceedings of the 35th International Cosmic Ray Conference, ICRC217, Busan, Kore

    Performance and science reach of the Probe of Extreme Multimessenger Astrophysics for ultrahigh-energy particles

    Get PDF
    The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is a potential NASA Astrophysics Probe-class mission designed to observe ultra-high energy cosmic rays (UHECRs) and cosmic neutrinos from space. POEMMA will monitor colossal volumes of the Earth's atmosphere to detect extensive air showers (EASs) produced by extremely energetic cosmic messengers: UHECRs above 20 EeV over the full sky and cosmic neutrinos above 20 PeV. We focus most of this study on the impact of POEMMA for UHECR science by simulating the detector response and mission performance for EAS from UHECRs. We show that POEMMA will provide a significant increase in the statistics of observed UHECRs at the highest energies over the entire sky. POEMMA will be the first UHECR fluorescence detector deployed in space that will provide high-quality stereoscopic observations of the longitudinal development of air showers. Therefore, it will be able to provide event-by-event estimates of the calorimetric energy and nuclear mass of UHECRs. The particle physics in the interactions limits the interpretation of the shower maximum on an event by event basis. In contrast, the calorimetric energy measurement is significantly less sensitive to the different possible final states in the early interactions. We study the prospects to discover the origin and nature of UHECRs using expectations for measurements of the energy spectrum, the distribution of arrival direction, and the atmospheric column depth at which the EAS longitudinal development reaches maximum. We also explore supplementary science capabilities of POEMMA through its sensitivity to particle interactions at extreme energies and its ability to detect ultra-high energy neutrinos and photons produced by top-down models including cosmic strings and super-heavy dark matter particle decay in the halo of the Milky Way.Comment: 40 pages revtex, with 42 figure

    Measurement of 0.25-3.2 GeV antiprotons in the cosmic radiation

    Get PDF
    The balloon-borne Isotope Matter-Antimatter Experiment (IMAX) was flown from Lynn Lake, Manitoba, Canada on 16–17 July 1992. Using velocity and magnetic rigidity to determine mass, we have directly measured the abundances of cosmic ray antiprotons and protons in the energy range from 0.25 to 3.2 GeV. Both the absolute flux of antiprotons and the antiproton/proton ratio are consistent with recent theoretical work in which antiprotons are produced as secondary products of cosmic ray interactions with the interstellar medium. This consistency implies a lower limit to the antiproton lifetime of ∼10 to the 7th yr

    In-flight Performance of the ISOMAX TOF

    Get PDF
    A state-of-the-art time-of-flight (TOF) system has been developed for the ISOMAX balloon-borne cosmic ray instrument. ISOMAX was built to measure the isotopic composition of the light elements in the cosmic rays, (3<Z<8), in particular beryllium. In-flight performance of the TOF, during the first flight in August of 1998, and some isotopic results are presented. The uncorrected timing resolution for a single paddle was determined to be ~47 ps for helium and ~23 ps for carbon
    corecore