225 research outputs found

    Systematic Study of Two-Pion Production in NN Collisions -- from Single-Baryon to Di-Baryon Excitations

    Full text link
    The two-pion production in nucleon-nucleon collisions has been studied by exclusive and kinematically complete experiments from threshold up to TpT_p = 1.36 GeV at CELSIUS-WASA. At near-threshold energies the total and differential distributions for the Ο€+Ο€βˆ’\pi^+\pi^- and Ο€0Ο€0\pi^0\pi^0 channels are dominated by Roper excitation and its decay into NΟƒN\sigma and Δπ\Delta\pi channels. At beam energies Tp>T_p > 1.1 GeV the ΔΔ\Delta\Delta excitation governs the two-pion production process. In the Ο€+Ο€+\pi^+\pi^+ channel evidence is found for the excitation of a higher-lying I=3/2 resonance, favorably the Ξ”(1600)\Delta(1600). The isovector fusion processes leading to the deuteron and to quasi-stable 2^2He, respectively, %with the production of an isovector pion-pair exhibit no or only a modest ABC-effect, {\it i.e.} low-mass enhancement in the ππ\pi\pi-invariant mass spectrum, and can be described by conventional tt-channel ΔΔ\Delta\Delta excitation. On the other hand, the isoscalar fusion process to the deuteron %with the production of an isoscalar pion-pair exhibits a dramatic ABC-effect correlated with a narrow resonance-like energy dependence in the total cross section with a width of only 50 MeV and situated at a mass 90 MeV below the ΔΔ\Delta\Delta mass.Comment: Proceedings HADRON0

    Anisotropy in the pion angular distribution of the reaction pp -> pp pi0 at 400 MeV

    Get PDF
    The reaction pp -> pp pi0 was studied with the WASA detector at the CELSIUS storage ring. The center of mass angular distribution of the pi0 was obtained by detection of the gamma decay products together with the two outgoing protons, and found to be anisotropic with a negative second derivative slope, in agreement with the theoretical predictions from a microscopic calculation.Comment: Revtex 4 style, 5 pages 7 figures, PACS numbers:13.60.Le, 13.75.Cs, 21.45.+v, 25.10.+

    ВлияниС Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ ΠΎΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π΅ΠΌΠΎΠ³ΠΎ слоя Ρ„ΠΎΡ‚ΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ смолы ΠΏΡ€ΠΈ SLA-Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠ΅Ρ‡Π°Ρ‚ΠΈ Π½Π° ΡƒΠΏΡ€ΡƒΠ³ΠΈΠ΅ ΠΈ прочностныС характСристики ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ Π°Π΄Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ производства

    Get PDF
    The possibility of using dynamic indentation method for measurement the elastic and strength properties of polymer products obtained by additive synthesis using the SLA-technology is considered. The sensitivity of the method to changes in hardness, tensile strength, and elastic modulus of products obtained by different printing modes with a thickness of the cured layer of photopolymer resin of 100, 50, and 25 microns has been estimated. A comparison is made of two main methods for calculating the physical and mechanical characteristics of a material according to the data of its impact loading diagram: an adapted classical method of mechanics of contact interaction, considering the geometric parameters of the deformed region of the material, and a method based on the energy characteristics of shock interaction. It was found that the highest sensitivity of the dynamic indentation method to changes in the properties of the additive polymer, depending on the thickness of its hardened layer, is provided when using an energy computational model for evaluating the properties of the material. The results obtained are the basis for the methods of non-destructive testing of polymer products of additive manufacturing by the method of dynamic indentation. The implementation of these techniques in portable measuring equipment is an alternative to standard destructive tests and will allow obtaining reliable data on the properties of the controlled material without the need to manufacture special witness samples.РассмотрСна Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ контроля ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ динамичСского индСнтирования ΡƒΠΏΡ€ΡƒΠ³ΠΈΡ… ΠΈ прочностных свойств ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΌ Π°Π΄Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ синтСза ΠΏΠΎ SLA-Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊ измСнСнию твСрдости, ΠΏΡ€Π΅Π΄Π΅Π»Π° прочности ΠΈ модуля упругости ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ, Π²Ρ‹Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΏΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ°ΠΌ ΠΏΠ΅Ρ‡Π°Ρ‚ΠΈ с Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ ΠΎΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π΅ΠΌΠΎΠ³ΠΎ слоя Ρ„ΠΎΡ‚ΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ смолы Π² 100, 50 ΠΈ 25 ΠΌΠΊΠΌ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ сравнСниС Π΄Π²ΡƒΡ… основных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ расчСта Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСских характСристик ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ Π΅Π³ΠΎ ΡƒΠ΄Π°Ρ€Π½ΠΎΠ³ΠΎ нагруТСния: Π°Π΄Π°ΠΏΡ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ классичСской ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠ³ΠΎ взаимодСйствия, Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ гСомСтричСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ области ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ Π½Π° основС энСргСтичСских характСристик ΡƒΠ΄Π°Ρ€Π½ΠΎΠ³ΠΎ взаимодСйствия. УстановлСно, Ρ‡Ρ‚ΠΎ наибольшая Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° динамичСского индСнтирования ΠΊ измСнСнию свойств Π°Π΄Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π° Π² зависимости ΠΎΡ‚ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ Π΅Π³ΠΎ ΠΎΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π΅ΠΌΠΎΠ³ΠΎ слоя обСспСчиваСтся ΠΏΡ€ΠΈ использовании энСргСтичСской расчСтной ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΎΡ†Π΅Π½ΠΊΠΈ свойств ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ – основа ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ Π½Π΅Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‰Π΅Π³ΠΎ контроля ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ Π°Π΄Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ производства ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ динамичСского индСнтирования. РСализация Π΄Π°Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ Π² ΠΏΠΎΡ€Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ΅ являСтся Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²ΠΎΠΉ стандартным Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‰ΠΈΠΌ испытаниям ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ достовСрныС Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ свойствах ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π±Π΅Π· нСобходимости изготовлСния ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ²-свидСтСлСй

    ΠžΡ†Π΅Π½ΠΊΠ° ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ опрСдСлСния Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСских характСристик ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΏΡ€ΠΈ ΠΈΡ… ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ индСнтирования

    Get PDF
    The active application in the practice of testing the indentation methods, in particular to measure the physical and mechanical properties of metals, polymers, biological technologies demands to development techniques for the measurement error estimation. At the same time existing traditional measurement error evaluation system, based on the using of the reference blocks, is not always suitable for use in testing and research laboratories. The aim of this work was development the technique for estimating the indirect measurements error of materials physical and mechanical characteristics that can be applied in practice and based on the existing standards. Checking of the proposed approach using the experimental values of the hardness and elastic modulus obtained during static indentation for various metals.It is shown that since the initial information about the material is an indentation curve representing the dependence of the load versus penetration depth of the indenter into the material tested, then it is better to confirm the metrological characteristics of the indentation measuring devices using the applied force and achieved displacement, but to estimate the accuracy of determining the properties through the error of indirect measurements. The equations for calculating the hardness and modulus of elasticity are derived. It allows to determine the component value most influencing the error magnitude. The calculation of error on the base of the value of boundary of a random and non-exclusive systematic error was carrying out.The advantage of the developed technique is the fact that the measurement of the physical and mechanical characteristics is based on the experimental data and does not require the creation of the additional metrological assurance. The proposed approach seems appropriate to extend for the determination of the measurement error of other characteristics: the yield point, the strain hardening exponent, creep, relaxation, determined by the indentation methods.АктивноС Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠ΅ Π² ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΡƒ контроля ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² индСнтирования, Π² частности для измСрСния Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСских характСристик ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ², ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ², биологичСских Ρ‚ΠΊΠ°Π½Π΅ΠΉ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ². ΠŸΡ€ΠΈ этом слоТившаяся традиционная систСма ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ€ Π½Π΅ всСгда ΠΏΡ€ΠΈΠ³ΠΎΠ΄Π½Π° для использования Π² ΠΈΡΠΏΡ‹Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Π½Π°ΡƒΡ‡Π½ΠΎ-ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΈΡ… лабораториях. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлась Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΠΎΠΉ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΠΈ ΠΎΠΏΠΈΡ€Π°ΡŽΡ‰Π΅ΠΉΡΡ Π½Π° ΠΎΡ‚Π΅Ρ‡Π΅ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΡƒΡŽ Π±Π°Π·Ρƒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ косвСнных ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСских характСристик ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° с использованиСм ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ твСрдости ΠΈ модуля упругости, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈ статичСском ΠΈΠ½Π΄Π΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ².Показано, Ρ‡Ρ‚ΠΎ ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹ΠΌ источником ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅ являСтся Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° вдавливания, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ собой Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ ΠΎΡ‚ Π³Π»ΡƒΠ±ΠΈΠ½Ρ‹ внСдрСния ΠΈΠ½Π΄Π΅Π½Ρ‚ΠΎΡ€Π° Π² исслСдуСмый ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π», Ρ‚ΠΎ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ мСтрологичСских характСристик ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰Π΅ΠΉΡΡ для индСнтирования, Π»ΡƒΡ‡ΡˆΠ΅ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡ‚ΡŒ ΠΏΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌ Ρ€Π°Π·Π²ΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ усилия ΠΈ пСрСмСщСния, Π° Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ опрСдСлСния свойств ΠΎΡ†Π΅Π½ΠΈΠ²Π°Ρ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ косвСнных ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ основныС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для расчСта твСрдости ΠΈ модуля упругости, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, наибольшим ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ Π²Π»ΠΈΡΡŽΡ‰ΠΈΠ΅ Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ. РасчСт ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π½Π° основС опрСдСляСмых Π³Ρ€Π°Π½ΠΈΡ† случайной ΠΈ Π½Π΅ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½Π½ΠΎΠΉ систСматичСской ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ.Достоинством Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ являСтся Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚, Ρ‡Ρ‚ΠΎ ΠΎΡ†Π΅Π½ΠΊΠ° точности ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСских характСристик производится Π½Π° основании ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ Π½Π΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ создания Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ мСтрологичСского обСспСчСния. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ прСдставляСтся цСлСсообразным Ρ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… характСристик: ΠΏΡ€Π΅Π΄Π΅Π»Π° тСкучСсти, показатСля Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ упрочнСния, ползучСсти, рСлаксации, опрСдСляСмых ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ индСнтирования

    Exclusive Measurements of pp -> dpi+pi0: Double-Pionic Fusion without ABC Effect

    Get PDF
    Exclusive measurements of the reaction pp -> dpi+pi0 have been carried out at T_p = 1.1 GeV at the CELSIUS storage ring using the WASA detector. The isovector pi+pi0 channel exhibits no enhancement at low invariant pipi masses, i. e. no ABC effect. The differential distributions are in agreement with the conventional t-channel Delta-Delta excitation process, which also accounts for the observed energy dependence of the total cross section. This is an update of a previously published version -- see important note at the end of the article

    Double-Pionic Fusion of Nuclear Systems and the ABCEffect -- Aproaching a Puzzle by Exclusive and Kinematically Complete Measurements

    Get PDF
    The ABC effect - a puzzling low-mass enhancement in the ππ\pi\pi invariant mass spectrum - is well-known from inclusive measurements of two-pion production in nuclear fusion reactions. Here we report on first exclusive and kinematically complete measurements of the most basic double pionic fusion reaction pnβ†’dΟ€0Ο€0pn \to d \pi^0\pi^0 at 1.03 and 1.35 GeV. The measurements, which have been carried out at CELSIUS-WASA, reveal the ABC effect to be a (ππ)I=L=0(\pi\pi)_{I=L=0} channel phenomenon associated with both a resonance-like energy dependence in the integral cross section and the formation of a ΔΔ\Delta\Delta system in the intermediate state. A corresponding simple s-channel resonance ansatz provides a surprisingly good description of the data

    Polarisation of the omega meson in the pd-->3He+omega reaction at 1360 and 1450 MeV

    Get PDF
    The tensor polarisation of omega mesons produced in the pd-->3He+omega reaction has been studied at two energies near threshold. The 3He nuclei were detected in coincidence with the pi0pi+pi- or pi0gamma decay products of the omega. In contrast to the case of phi meson production, the omega mesons are found to be unpolarised. This brings into question the applicability of the Okubo-Zweig-Iizuka rule when comparing the production of vector mesons in low energy hadronic reactions.Comment: 11 pages, 4 figure
    • …
    corecore