1,140 research outputs found

    Humans, geometric similarity and the Froude number: is ''reasonably close'' really close enough?

    Get PDF
    Summary Understanding locomotor energetics is imperative, because energy expended during locomotion, a requisite feature of primate subsistence, is lost to reproduction. Although metabolic energy expenditure can only be measured in extant species, using the equations of motion to calculate mechanical energy expenditure offers unlimited opportunities to explore energy expenditure, particularly in extinct species on which empirical experimentation is impossible. Variability, either within or between groups, can manifest as changes in size and/or shape. Isometric scaling (or geometric similarity) requires that all dimensions change equally among all individuals, a condition that will not be met in naturally developing populations. The Froude number (Fr), with lower limb (or hindlimb) length as the characteristic length, has been used to compensate for differences in size, but does not account for differences in shape. To determine whether or not shape matters at the intraspecific level, we used a mechanical model that had properties that mimic human variation in shape. We varied crural index and limb segment circumferences (and consequently, mass and inertial parameters) among nine populations that included 19 individuals that were of different size. Our goal in the current work is to understand whether shape variation changes mechanical energy sufficiently enough to make shape a critical factor in mechanical and metabolic energy assessments. Our results reaffirm that size does not affect mass-specific mechanical cost of transport (Alexander and Jayes, 1983) among geometrically similar individuals walking at equal Fr. The known shape differences among modern humans, however, produce sufficiently large differences in internal and external work to account for much of the observed variation in metabolic energy expenditure, if mechanical energy is correlated with metabolic energy. Any species or other group that exhibits shape differences should be affected similarly to that which we establish for humans. Unfortunately, we currently do not have a simple method to control or adjust for size–shape differences in individuals that are not geometrically similar, although musculoskeletal modeling is a viable, and promising, alternative. In mouse-to-elephant comparisons, size differences could represent the largest source of morphological variation, and isometric scaling factors such as Fr can compensate for much of the variability. Within species, however, shape differences may dominate morphological variation and Fr is not designed to compensate for shape differences. In other words, those shape differences that are “reasonably close” at the mouse-to-elephant level may become grossly different for within-species energetic comparisons

    Equivalence of Recurrence Relations for Feynman Integrals with the Same Total Number of External and Loop Momenta

    Get PDF
    We show that the problem of solving recurrence relations for L-loop (R+1)-point Feynman integrals within the method of integration by parts is equivalent to the corresponding problem for (L+R)-loop vacuum or (L+R-1)-loop propagator-type integrals. Using this property we solve recurrence relations for two-loop massless vertex diagrams, with arbitrary numerators and integer powers of propagators in the case when two legs are on the light cone, by reducing the problem to the well-known solution of the corresponding recurrence relations for massless three-loop propagator diagrams with specific boundary conditions.Comment: 8 pp., LaTeX with axodraw.st

    The transferrin receptor: the iron bridge between the cell and its environment: A diagnostic tool in daily practice?

    Get PDF
    "The versatility of uses Nature has found for iron originates in the simple aqueous chemistIy of this essential transition metal. Of the diverse chemical reactions of iron in solution the most important is the facile and reversible one-electron oxidation-reduction reaction that takes iron between its two common oxidation states, the fenous and the ferrief( (1). It is for this reason that iron is a key element in many biochemical processes and shortage of iron causes damage to cells and organs. On the othcr hand it is also this feature which makes iron one of the most harmful clements, because it is able to catalyse the formation of highly reactive oxygen and hydrogen radicals when present in the unbound state. These radicals can cause permanent damage to intracellular proteins and DNA. Almost all organisms from micro organisms and plants up to the higher organisms like humans require iron, but at a neutral pH thc solubility product of iron is extremely low (Fe(OH), = 4xlO'''), which makes iron almost insoluble. For this reason proteins have developed to manage the storage and transport of iron bet\\veen cells

    On the statistical significance of the conductance quantization

    Full text link
    Recent experiments on atomic-scale metallic contacts have shown that the quantization of the conductance appears clearly only after the average of the experimental results. Motivated by these results we have analyzed a simplified model system in which a narrow neck is randomly coupled to wide ideal leads, both in absence and presence of time reversal invariance. Based on Random Matrix Theory we study analytically the probability distribution for the conductance of such system. As the width of the leads increases the distribution for the conductance becomes sharply peaked close to an integer multiple of the quantum of conductance. Our results suggest a possible statistical origin of conductance quantization in atomic-scale metallic contacts.Comment: 4 pages, Tex and 3 figures. To be published in PR

    Vanishing of the conformal anomaly for strings in a gravitational wave

    Full text link
    Using the non-symmetric-connection approach proposed by Osborn, we demonstrate that, for a bosonic string in a specially chosen plane-fronted gravitational wave and an axion background, the conformal anomaly vanishes at the two-loop level. Under some conditions, the anomaly vanishes at all orders.Comment: Previously not available in hep-th. Published as Physics Letters B 313, 10 (1993). Plain TeX 6 pages. No figure

    The random phase property and the Lyapunov Spectrum for disordered multi-channel systems

    Get PDF
    A random phase property establishing in the weak coupling limit a link between quasi-one-dimensional random Schrödinger operators and full random matrix theory is advocated. Briefly summarized it states that the random transfer matrices placed into a normal system of coordinates act on the isotropic frames and lead to a Markov process with a unique invariant measure which is of geometric nature. On the elliptic part of the transfer matrices, this measure is invariant under the unitaries in the hermitian symplectic group of the universality class under study. While the random phase property can up to now only be proved in special models or in a restricted sense, we provide strong numerical evidence that it holds in the Anderson model of localization. A main outcome of the random phase property is a perturbative calculation of the Lyapunov exponents which shows that the Lyapunov spectrum is equidistant and that the localization lengths for large systems in the unitary, orthogonal and symplectic ensemble differ by a factor 2 each. In an Anderson-Ando model on a tubular geometry with magnetic field and spin-orbit coupling, the normal system of coordinates is calculated and this is used to derive explicit energy dependent formulas for the Lyapunov spectrum

    Numerical verification of universality for the Anderson transition

    Full text link
    We analyze the scaling behavior of the higher Lyapunov exponents at the Anderson transition. We estimate the critical exponent and verify its universality and that of the critical conductance distribution for box, Gaussian and Lorentzian distributions of the random potential

    Unitary limit and quantum interference effect in disordered two-dimensional crystals with nearly half-filled bands

    Full text link
    Based on the self-consistent TT-matrix approximation, the quantum interference (QI) effect is studied with the diagrammatic technique in weakly-disordered two-dimensional crystals with nearly half-filled bands. In addition to the usual 0-mode cooperon and diffuson, there exist π\pi-mode cooperon and diffuson in the unitary limit due to the particle-hole symmetry. The diffusive π\pi-modes are gapped by the deviation from the exactly-nested Fermi surface. The conductivity diagrams with the gapped π\pi-mode cooperon or diffuson are found to give rise to unconventional features of the QI effect. Besides the inelastic scattering, the thermal fluctuation is shown to be also an important dephasing mechanism in the QI processes related with the diffusive π\pi-modes. In the proximity of the nesting case, a power-law anti-localization effect appears due to the π\pi-mode diffuson. For large deviation from the nested Fermi surface, this anti-localization effect is suppressed, and the conductivity remains to have the usual logarithmic weak-localization correction contributed by the 0-mode cooperon. As a result, the dc conductivity in the unitary limit becomes a non-monotonic function of the temperature or the sample size, which is quite different from the prediction of the usual weak-localization theory.Comment: 21 pages, 4 figure

    Symmetry, dimension and the distribution of the conductance at the mobility edge

    Full text link
    The probability distribution of the conductance at the mobility edge, pc(g)p_c(g), in different universality classes and dimensions is investigated numerically for a variety of random systems. It is shown that pc(g)p_c(g) is universal for systems of given symmetry, dimensionality, and boundary conditions. An analytical form of pc(g)p_c(g) for small values of gg is discussed and agreement with numerical data is observed. For g>1g > 1, lnpc(g)\ln p_c(g) is proportional to (g1)(g-1) rather than (g1)2(g-1)^2.Comment: 4 pages REVTeX, 5 figures and 2 tables include

    Resistivity of a Metal between the Boltzmann Transport Regime and the Anderson Transition

    Full text link
    We study the transport properties of a finite three dimensional disordered conductor, for both weak and strong scattering on impurities, employing the real-space Green function technique and related Landauer-type formula. The dirty metal is described by a nearest neighbor tight-binding Hamiltonian with a single s-orbital per site and random on-site potential (Anderson model). We compute exactly the zero-temperature conductance of a finite size sample placed between two semi-infinite disorder-free leads. The resistivity is found from the coefficient of linear scaling of the disorder averaged resistance with sample length. This ``quantum'' resistivity is compared to the semiclassical Boltzmann expression computed in both Born approximation and multiple scattering approximation.Comment: 5 pages, 3 embedded EPS figure
    corecore