22 research outputs found

    Intestinal fatty-acid binding protein and gut permeability responses to exercise

    Get PDF
    Purpose Intestinal cell damage due to physiological stressors (e.g. heat, oxidative, hypoperfusion/ischaemic) may contribute to increased intestinal permeability. The aim of this study was to assess changes in plasma intestinal fatty acid-binding protein (I-FABP) in response to exercise (with bovine colostrum supplementation, Col, positive control) and compare this to intestinal barrier integrity/permeability (5 h urinary lactulose/rhamnose ratio, L/R). Methods In a double-blind, placebo-controlled, crossover design, 18 males completed two experimental arms (14 days of 20 g/day supplementation with Col or placebo, Plac). For each arm participants performed two baseline (resting) intestinal permeability assessments (L/R) pre-supplementation and one post-exercise following supplementation. Blood samples were collected pre- and post-exercise to determine I-FABP concentration. Results Two-way repeated measures ANOVA revealed an arm?×?time interaction for L/R and I-FABP (P?<?0.001). Post hoc analyses showed urinary L/R increased post-exercise in Plac (273% of pre, P?<?0.001) and Col (148% of pre, P?<?0.001) with post-exercise values significantly lower with Col (P?<?0.001). Plasma I-FABP increased post-exercise in Plac (191% of pre-exercise, P?=?0.002) but not in the Col arm (107%, P?=?0.862) with post-exercise values significantly lower with Col (P?=?0.013). Correlations between the increase in I-FABP and L/R were evident for visit one (P?=?0.044) but not visit two (P?=?0.200) although overall plots/patterns do appear similar for each. Conclusion These findings suggest that exercise-induced intestinal cellular damage/injury is partly implicated in changes in permeability but other factors must also contribute

    Suspended sediment alters predator–prey interactions between two coral reef fishes

    No full text
    Sediment derived from agriculture and development increases water turbidity and threatens the health of inshore coral reefs. In this study, we examined whether suspended sediment could change predation patterns through a reduction in visual cues. We measured survivorship of newly settled Chromis atripectoralis exposed to Pseudochromis fuscus, a common predator of juvenile damselfishes, in aquaria with one of four turbidity levels. Increased turbidity led to a nonlinear response in predation patterns. Predator-induced mortality was ~50 % in the control and low turbidity level, but exhibited a substantial increase in the medium level. In the highest turbidity level, predation rates declined to the level seen in the control. These results suggest an imbalance in how the predator and prey cope with turbidity. A turbidity-induced change to the outcome of predator–prey interactions represents a major change to the fundamental processes that regulate fish assemblages
    corecore