58 research outputs found

    Negative Effects of Paternal Age on Children's Neurocognitive Outcomes Can Be Explained by Maternal Education and Number of Siblings

    Get PDF
    Background: Recent findings suggest advanced paternal age may be associated with impaired child outcomes, in particular, neurocognitive skills. Such patterns are worrisome given relatively universal trends in advanced countries toward delayed nuptiality and fertility. But nature and nurture are both important for child outcomes, and it is important to control for both when drawing inferences about either pathway. Methods and Findings: We examined cross-sectional patterns in six developmental outcome measures among children in the U.S. Collaborative Perinatal Project (n = 31,346). Many of these outcomes at 8 mo, 4 y, and 7 y of age (Bayley scales, Stanford Binet Intelligence Scale, Graham-Ernhart Block Sort Test, Wechsler Intelligence Scale for Children, Wide Range Achievement Test) are negatively correlated with paternal age when important family characteristics such as maternal education and number of siblings are not included as covariates. But controlling for family characteristics in general and mother’s education in particular renders the effect of paternal age statistically insignificant for most developmental measures. Conclusions: Assortative mating produces interesting relationships between maternal and paternal characteristics that can inject spurious correlation into observational studies via omitted variable bias. Controlling for both nature and nurture reveals little residual evidence of a link between child neurocognitive outcomes and paternal age in these data. Result

    Maternal risk factors for abnormal placental growth: The national collaborative perinatal project

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies of maternal risk factors for abnormal placental growth have focused on placental weight and placental ratio as measures of placental growth. We sought to identify maternal risk factors for placental weight and two neglected dimensions of placental growth: placental thickness and chorionic plate area.</p> <p>Methods</p> <p>We conducted an analysis of 24,135 mother-placenta pairs enrolled in the National Collaborative Perinatal Project, a prospective cohort study of pregnancy and child health. We defined growth restriction as < 10<sup>th </sup>percentile and hypertrophy as > 90<sup>th </sup>percentile for three placental growth dimensions: placental weight, placental thickness and chorionic plate area. We constructed parallel multinomial logistic regression analyses to identify (a) predictors of restricted growth (vs. normal) and (b) predictors of hypertrophic growth (vs. normal).</p> <p>Results</p> <p>Black race was associated with an increased likelihood of growth restriction for placental weight, thickness and chorionic plate area, but was associated with a reduced likelihood of hypertrophy for these three placental growth dimensions. We observed an increased likelihood of growth restriction for placental weight and chorionic plate area among mothers with hypertensive disease at 24 weeks or beyond. Anemia was associated with a reduced likelihood of growth restriction for placental weight and chorionic plate area. Pre-pregnancy BMI and pregnancy weight gain were associated with a reduced likelihood of growth restriction and an increased likelihood of hypertrophy for all three dimensions of placental growth.</p> <p>Conclusion</p> <p>Maternal risk factors are either associated with placental growth restriction or placental hypertrophy not both. Our findings suggest that the placenta may have compensatory responses to certain maternal risk factors suggesting different underlying biological mechanisms.</p

    FGF4 Independent Derivation of Trophoblast Stem Cells from the Common Vole

    Get PDF
    The derivation of stable multipotent trophoblast stem (TS) cell lines from preimplantation, and early postimplantation mouse embryos has been reported previously. FGF4, and its receptor FGFR2, have been identified as embryonic signaling factors responsible for the maintenance of the undifferentiated state of multipotent TS cells. Here we report the derivation of stable TS-like cell lines from the vole M. rossiaemeridionalis, in the absence of FGF4 and heparin. Vole TS-like cells are similar to murine TS cells with respect to their morphology, transcription factor gene expression and differentiation in vitro into derivatives of the trophectoderm lineage, and with respect to their ability to invade and erode host tissues, forming haemorrhagic tumours after subcutaneous injection into nude mice. Moreover, vole TS-like cells carry an inactive paternal X chromosome, indicating that they have undergone imprinted X inactivation, which is characteristic of the trophoblast lineage. Our results indicate that an alternative signaling pathway may be responsible for the establishment and stable proliferation of vole TS-like cells
    • …
    corecore