1,731 research outputs found

    The influence of solar wind variability on magnetospheric ULF wave power

    Get PDF
    Magnetospheric ultra-low frequency (ULF) oscillations in the Pc 4–5 frequency range play an important role in the dynamics of Earth's radiation belts, both by enhancing the radial diffusion through incoherent interactions and through the coherent drift-resonant interactions with trapped radiation belt electrons. The statistical distributions of magnetospheric ULF wave power are known to be strongly dependent on solar wind parameters such as solar wind speed and interplanetary magnetic field (IMF) orientation. Statistical characterisation of ULF wave power in the magnetosphere traditionally relies on average solar wind–IMF conditions over a specific time period. In this brief report, we perform an alternative characterisation of the solar wind influence on magnetospheric ULF wave activity through the characterisation of the solar wind driver by its variability using the standard deviation of solar wind parameters rather than a simple time average. We present a statistical study of nearly one solar cycle (1996–2004) of geosynchronous observations of magnetic ULF wave power and find that there is significant variation in ULF wave powers as a function of the dynamic properties of the solar wind. In particular, we find that the variability in IMF vector, rather than variabilities in other parameters (solar wind density, bulk velocity and ion temperature), plays the strongest role in controlling geosynchronous ULF power. We conclude that, although time-averaged bulk properties of the solar wind are a key factor in driving ULF powers in the magnetosphere, the solar wind variability can be an important contributor as well. This highlights the potential importance of including solar wind variability especially in studies of ULF wave dynamics in order to assess the efficiency of solar wind–magnetosphere coupling

    The impact of silver nanoparticles on microbial communities and antibiotic resistance determinants in the environment.

    Get PDF
    Nanosilver (NAg) is currently one of the major alternative antimicrobials to control microorganisms. With its broad-spectrum efficacy and lucrative commercial values, NAg has been used in medical devices and increasingly, in consumer products and appliances. This widespread use has inevitably led to the release and accumulation of the nanoparticle in water and sediment, in soil and even, wastewater treatment plants (WWTPs). This Article describes the physical and chemical transformations of NAg as well as the impact of the nanoparticle on microbial communities in different environmental settings; how the nanoparticle shifts not only the diversity and abundance of microbes, including those that are important in nitrogen cycles and decomposition of organic matters, but also their associated genes and in turn, the key metabolic processes. Current findings on the microbiological activity of the leached soluble silver, solid silver particulates and their respective transformed products, which underpin the mechanism of the nanoparticle toxicity in environmental microbes, is critically discussed. The Article also addresses the emerging evidence of silver-driven co-selection of antibiotic resistance determinants. The mechanism has been linked to the increasing pools of many antibiotic resistance genes already detected in samples from different environmental settings, which could ultimately find their ways to animals and human. The realized ecological impact of NAg calls for more judicial use of the nanoparticle. The generated knowledge can inform strategies for a better 'risks versus benefits' assessment of NAg applications, including the disposal stage

    Effects of ULF wave power on relativistic radiation belt electrons: 8-9 October 2012 geomagnetic storm

    Get PDF
    Electromagnetic ultralow-frequency (ULF) waves are known to play a substantial role in radial transport, acceleration, and loss of relativistic particles trapped in the Earth's outer radiation belt. Using in situ observations by multiple spacecraft operating in the vicinity of outer radiation belts, we analyze the temporal and spatial behavior of ULF waves throughout the geomagnetic storm of 8–9 October 2012 and compare with the dynamics of relativistic electron fluxes on board the twin Van Allen Probes spacecraft. The analysis shows that the relativistic electron fluxes reduce from their prestorm levels during the first phase of the storm and rapidly increase during the second phase of the storm. We demonstrate that the behavior of ULF wave power changes throughout the storm, from ULF oscillations being a mixture of compressional and shear magnetic components during the first phase of the storm to ULF oscillations being dominated by transverse (shear) components during the second phase. We analyze the parameters of ULF-driven radial diffusion throughout the storm and compare the observed diffusion coefficients with their statistical averages. We demonstrate that the observed diffusion coefficients are strong enough to impact the redistribution of relativistic electron fluxes from and to the outer boundary of radiation belts and the diffusion might influence the effects of any local electron acceleration by transporting fluxes inward or outward according to phase space density gradients

    Efficient recycling strategies for preparing large Fock states from single-photon sources: Applications to quantum metrology

    Full text link
    © 2016 American Physical Society. Fock states are a fundamental resource for many quantum technologies such as quantum metrology. While much progress has been made in single-photon source technologies, preparing Fock states with a large photon number remains challenging. We present and analyze a bootstrapped approach for nondeterministically preparing large photon-number Fock states by iteratively fusing smaller Fock states on a beamsplitter. We show that by employing state recycling we are able to exponentially improve the preparation rate over conventional schemes, allowing the efficient preparation of large Fock states. The scheme requires single-photon sources, beamsplitters, number-resolved photodetectors, fast-feedforward, and an optical quantum memory

    Diagnosing the Role of Alfvén Waves in Magnetosphere-Ionosphere Coupling: Swarm Observations of Large Amplitude Nonstationary Magnetic Perturbations During an Interval of Northward IMF

    Get PDF
    High-resolution multispacecraft Swarm data are used to examine magnetosphere-ionosphere coupling during a period of northward interplanetary magnetic field (IMF) on 31 May 2014. The observations reveal a prevalence of unexpectedly large amplitude (>100 nT) and time-varying magnetic perturbations during the polar passes, with especially large amplitude magnetic perturbations being associated with large-scale downward field-aligned currents. Differences between the magnetic field measurements sampled at 50 Hz from Swarm A and C, approximately 10 s apart along track, and the correspondence between the observed electric and magnetic fields at 16 samples per second, provide significant evidence for an important role for Alfvén waves in magnetosphere-ionosphere coupling even during northward IMF conditions. Spectral comparison between the wave E- and B-fields reveals a frequency-dependent phase difference and amplitude ratio consistent with interference between incident and reflected Alfvén waves. At low frequencies, the E/B ratio is in phase with an amplitude determined by the Pedersen conductance. At higher frequencies, the amplitude and phase change as a function of frequency in good agreement with an ionospheric Alfvén resonator model including Pedersen conductance effects. Indeed, within this Alfvén wave incidence, reflection, and interference paradigm, even quasi-static field-aligned currents might be reasonably interpreted as very low frequency (ω → 0) Alfvén waves. Overall, our results not only indicate the importance of Alfvén waves for magnetosphere-ionosphere coupling but also demonstrate a method for using Swarm data for the innovative experimental diagnosis of Pedersen conductance from low-Earth orbit satellite measurements

    The Response of Electron Pitch Angle Distributions to the Upper Limit on Stably Trapped Particles

    Get PDF
    We use Van Allen Probes electron data during 70 geomagnetic storms to examine the response of equatorial pitch angle distributions (PADs) at L* = 4.0–4.5 to a theoretical upper limit on stably trapped particle fluxes. Of the energies examined, 54 and 108 keV electron PADs isotropize to a previously assumed level within 6 hr of reaching the limit, near-identically across all 70 storms, consistent with rapid pitch angle scattering due to chorus wave interactions. In around 30% of events, 54 keV electrons completely exceed the KP limit, before being quickly subdued. 470 and 749 keV PADs show clear indications of an upper limit, though less aligned with the calculated limit used here. The consistency of an absolute upper limit shown across all events demonstrates the importance of this phenomena in both the limiting effect on electron flux and consistently influencing electron PAD evolution during geomagnetic storms. These results also highlight the need for further investigation, particularly related to the limiting of higher energy electrons

    Generating mice with targeted mutations.

    Get PDF
    Journal ArticleMutational analysis is one of the most informative approaches available for the study of complex biological processes. It has been particularly successful in the analysis of the biology of bacteria, yeast, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Extension of this approach to the mouse, through informative, was far less successful relative to what has been achieved with these simpler model organisms. This is because it is not numerically practical in mice to use random mutagenesis to isolate mutations that affect a specified biological process of interest. Nonetheless, biological phenomena such as a sophisticated immune response, cancer, vascular disease or higher-order cognitive function, to mention just a few, must analyzed in organisms that show such phenomena, and for this reason geneticists and other researchers have turned to the mouse. Gene targeting, the means for creating mice with designed mutations in almost any gene, was developed as an alternative to the impractical use of random mutgenesis for pursing genetic analysis in the mouse. Now gene targeting has advanced the genomic manipulations possible in mice to a level that can be matched only in far simple organisms such as bacteria and yeast

    Measuring the health impact of human rights violations related to Australian asylum policies and practices: A mixed methods study

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2009 Johnston et al.BACKGROUND: Human rights violations have adverse consequences for health. However, to date, there remains little empirical evidence documenting this association, beyond the obvious physical and psychological effects of torture. The primary aim of this study was to investigate whether Australian asylum policies and practices, which arguably violate human rights, are associated with adverse health outcomes. METHODS: We designed a mixed methods study to address the study aim. A cross-sectional survey was conducted with 71 Iraqi Temporary Protection Visa (TPV) refugees and 60 Iraqi Permanent Humanitarian Visa (PHV) refugees, residing in Melbourne, Australia. Prior to a recent policy amendment, TPV refugees were only given temporary residency status and had restricted access to a range of government funded benefits and services that permanent refugees are automatically entitled to. The quantitative results were triangulated with semi-structured interviews with TPV refugees and service providers. The main outcome measures were self-reported physical and psychological health. Standardised self-report instruments, validated in an Arabic population, were used to measure health and wellbeing outcomes. RESULTS: Forty-six percent of TPV refugees compared with 25% of PHV refugees reported symptoms consistent with a diagnosis of clinical depression (p = 0.003). After controlling for the effects of age, gender and marital status, TPV status made a statistically significant contribution to psychological distress (B = 0.5, 95% CI 0.3 to 0.71, p </= 0.001) amongst Iraqi refugees. Qualitative data revealed that TPV refugees generally felt socially isolated and lacking in control over their life circumstances, because of their experiences in detention and on a temporary visa. This sense of powerlessness and, for some, an implicit awareness they were being denied basic human rights, culminated in a strong sense of injustice. CONCLUSION: Government asylum policies and practices violating human rights norms are associated with demonstrable psychological health impacts. This link between policy, rights violations and health outcomes offers a framework for addressing the impact of socio-political structures on health.This research was supported by an Australian National and Medical Research Council PhD Scholarship (N. 251782) and a Victorian Health Promotion Foundation research grant (No. 2002-0280)

    Systematic review of communication technologies to promote access and engagement of young people with diabetes into healthcare

    Get PDF
    Background: Research has investigated whether communication technologies (e.g. mobile telephony, forums, email) can be used to transfer digital information between healthcare professionals and young people who live with diabetes. The systematic review evaluates the effectiveness and impact of these technologies on communication. Methods: Nine electronic databases were searched. Technologies were described and a narrative synthesis of all studies was undertaken. Results: Of 20,925 publications identified, 19 met the inclusion criteria, with 18 technologies assessed. Five categories of communication technologies were identified: video-and tele-conferencing (n = 2); mobile telephony (n = 3); telephone support (n = 3); novel electronic communication devices for transferring clinical information (n = 10); and web-based discussion boards (n = 1). Ten studies showed a positive improvement in HbA1c following the intervention with four studies reporting detrimental increases in HbA1c levels. In fifteen studies communication technologies increased the frequency of contact between patient and healthcare professional. Findings were inconsistent of an association between improvements in HbA1c and increased contact. Limited evidence was available concerning behavioural and care coordination outcomes, although improvement in quality of life, patientcaregiver interaction, self-care and metabolic transmission were reported for some communication technologies. Conclusions: The breadth of study design and types of technologies reported make the magnitude of benefit and their effects on health difficult to determine. While communication technologies may increase the frequency of contact between patient and health care professional, it remains unclear whether this results in improved outcomes and is often the basis of the intervention itself. Further research is needed to explore the effectiveness and cost effectiveness of increasing the use of communication technologies between young people and healthcare professionals
    corecore