CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Efficient recycling strategies for preparing large Fock states from single-photon sources: Applications to quantum metrology
Authors
EA Bergeron
DW Berry
+7 more
JP Dowling
A Gilchrist
RL Mann
KR Motes
JP Olson
PP Rohde
NM Studer
Publication date
1 January 2016
Publisher
'American Physical Society (APS)'
Doi
Abstract
© 2016 American Physical Society. Fock states are a fundamental resource for many quantum technologies such as quantum metrology. While much progress has been made in single-photon source technologies, preparing Fock states with a large photon number remains challenging. We present and analyze a bootstrapped approach for nondeterministically preparing large photon-number Fock states by iteratively fusing smaller Fock states on a beamsplitter. We show that by employing state recycling we are able to exponentially improve the preparation rate over conventional schemes, allowing the efficient preparation of large Fock states. The scheme requires single-photon sources, beamsplitters, number-resolved photodetectors, fast-feedforward, and an optical quantum memory
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 18/10/2019
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1103%2Fphysreva.94...
Last time updated on 03/01/2020
Macquarie University ResearchOnline
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 25/04/2017