83 research outputs found
KLAVS RANDSBORG: SOCIAL STRATIFICATION IN EARLY BRONZE AGE DENMARK: A STUDY IN THE REGULATION OF CULTURAL SYSTEMS. Prähistorische Zeitschrift, 49. Band 1974 Heft 1. BEFOLKNING OG SOCIAL VARIATION I ÆLDRE BRONZEALDERS DANMARK. KUML 1973-74
KLAVS RANDSBORG: SOCIAL STRATIFICATION IN EARLY BRONZE AGE DENMARK: A STUDY IN THE REGULATION OF CULTURAL SYSTEMS. Prähistorische Zeitschrift, 49. Band 1974 Heft 1. BEFOLKNING OG SOCIAL VARIATION I ÆLDRE BRONZEALDERS DANMARK. KUML 1973-74 og Kontaktstencil nr. 8 197
Developmental trajectory of the healthy human gut microbiota during the first 5 years of life
The gut is inhabited by a densely populated ecosystem, the gut microbiota, that is established at birth. However, the succession by which different bacteria are incorporated into the gut microbiota is still relatively unknown. Here, we analyze the microbiota from 471 Swedish children followed from birth to 5 years of age, collecting samples after 4 and 12 months and at 3 and 5 years of age as well as from their mothers at birth using 16S rRNA gene profiling. We also compare their microbiota to an adult Swedish population. Genera follow 4 different colonization patterns during establishment where Methanobrevibacter and Christensenellaceae colonize late and do not reached adult levels at 5 years. These late colonizers correlate with increased alpha diversity in both children and adults. By following the children through age-specific community types, we observe that children have individual dynamics in the gut microbiota development trajectory
Changes in Proteasome Structure and Function Caused by HAMLET in Tumor Cells
BACKGROUND: Proteasomes control the level of endogenous unfolded proteins by degrading them in the proteolytic core. Insufficient degradation due to altered protein structure or proteasome inhibition may trigger cell death. This study examined the proteasome response to HAMLET, a partially unfolded protein-lipid complex, which is internalized by tumor cells and triggers cell death. METHODOLOGY/PRINCIPAL FINDINGS: HAMLET bound directly to isolated 20S proteasomes in vitro and in tumor cells significant co-localization of HAMLET and 20S proteasomes was detected by confocal microscopy. This interaction was confirmed by co-immunoprecipitation from extracts of HAMLET-treated tumor cells. HAMLET resisted in vitro degradation by proteasomal enzymes and degradation by intact 20S proteasomes was slow compared to fatty acid-free, partially unfolded alpha-lactalbumin. After a brief activation, HAMLET inhibited proteasome activity in vitro and in parallel a change in proteasome structure occurred, with modifications of catalytic (beta1 and beta5) and structural subunits (alpha2, alpha3, alpha6 and beta3). Proteasome inhibition was confirmed in extracts from HAMLET-treated cells and there were indications of proteasome fragmentation in HAMLET-treated cells. CONCLUSIONS/SIGNIFICANCE: The results suggest that internalized HAMLET is targeted to 20S proteasomes, that the complex resists degradation, inhibits proteasome activity and perturbs proteasome structure. We speculate that perturbations of proteasome structure might contribute to the cytotoxic effects of unfolded protein complexes that invade host cells
Re-interpreting conventional interval estimates taking into account bias and extra-variation
BACKGROUND: The study design with the smallest bias for causal inference is a perfect randomized clinical trial. Since this design is often not feasible in epidemiologic studies, an important challenge is to model bias properly and take random and systematic variation properly into account. A value for a target parameter might be said to be "incompatible" with the data (under the model used) if the parameter's confidence interval excludes it. However, this "incompatibility" may be due to bias and/or extra-variation. DISCUSSION: We propose the following way of re-interpreting conventional results. Given a specified focal value for a target parameter (typically the null value, but possibly a non-null value like that representing a twofold risk), the difference between the focal value and the nearest boundary of the confidence interval for the parameter is calculated. This represents the maximum correction of the interval boundary, for bias and extra-variation, that would still leave the focal value outside the interval, so that the focal value remained "incompatible" with the data. We describe a short example application concerning a meta analysis of air versus pure oxygen resuscitation treatment in newborn infants. Some general guidelines are provided for how to assess the probability that the appropriate correction for a particular study would be greater than this maximum (e.g. using knowledge of the general effects of bias and extra-variation from published bias-adjusted results). SUMMARY: Although this approach does not yet provide a method, because the latter probability can not be objectively assessed, this paper aims to stimulate the re-interpretation of conventional confidence intervals, and more and better studies of the effects of different biases
Endogenous myoglobin in human breast cancer is a hallmark of luminal cancer phenotype
BACKGROUND: We aimed to clarify the incidence and the clinicopathological value of non-muscle myoglobin (Mb) in a large cohort of non-invasive and invasive breast cancer cases. METHODS: Matched pairs of breast tissues from 10 patients plus 17 breast cell lines were screened by quantitative PCR for Mb mRNA. In addition, 917 invasive and 155 non-invasive breast cancer cases were analysed by immunohistochemistry for Mb expression and correlated to clinicopathological parameters and basal molecular characteristics including oestrogen receptor-alpha (ERalpha)/progesteron receptor (PR)/HER2, fatty acid synthase (FASN), hypoxia-inducible factor-1alpha (HIF-1alpha), HIF-2alpha, glucose transporter 1 (GLUT1) and carbonic anhydrase IX (CAIX). The spatial relationship of Mb and ERalpha or FASN was followed up by double immunofluorescence. Finally, the effects of estradiol treatment and FASN inhibition on Mb expression in breast cancer cells were analysed. RESULTS: Myoglobin mRNA was found in a subset of breast cancer cell lines; in microdissected tumours Mb transcript was markedly upregulated. In all, 71% of tumours displayed Mb protein expression in significant correlation with a positive hormone receptor status and better prognosis. In silico data mining confirmed higher Mb levels in luminal-type breast cancer. Myoglobin was also correlated to FASN, HIF-2alpha and CAIX, but not to HIF-1alpha or GLUT1, suggesting hypoxia to participate in its regulation. Double immunofluorescence showed a cellular co-expression of ERalpha or FASN and Mb. In addition, Mb levels were modulated on estradiol treatment and FASN inhibition in a cell model. CONCLUSION: We conclude that in breast cancer, Mb is co-expressed with ERalpha and co-regulated by oestrogen signalling and can be considered a hallmark of luminal breast cancer phenotype. This and its possible new role in fatty acid metabolism may have fundamental implications for our understanding of Mb in solid tumours
The ubiquitin-like molecule interferon-stimulated gene 15 (ISG15) is a potential prognostic marker in human breast cancer
INTRODUCTION: ISG15 is an ubiquitin-like molecule that is strongly upregulated by type I interferons as a primary response to diverse microbial and cellular stress stimuli. However, alterations in the ISG15 signalling pathway have also been found in several human tumour entities. To the best of our knowledge, in the current study we present for the first time a systematic characterisation of ISG15 expression in human breast cancer and normal breast tissue both at the mRNA and protein level. METHOD: Using semiquantitative real-time PCR, cDNA dot-blot hybridisation and immunohistochemistry, we systematically analysed ISG15 expression in invasive breast carcinomas (n = 910) and normal breast tissues (n = 135). ISG15 protein expression was analysed in two independent cohorts on tissue microarrays; in an initial evaluation set of 179 breast carcinomas and 51 normal breast tissues; and in a second large validation set of 646 breast carcinomas and 10 normal breast tissues. In addition, a collection of benign and malignant mammary cell lines (n = 9) were investigated for ISG15 expression. RESULTS: ISG15 was overexpressed in breast carcinoma cells compared with normal breast tissue, both at the RNA and protein level. Recurrence-free (p = 0.030), event-free (p = 0.001) and overall (p = 0.001) survival analyses showed a significant correlation between ISG15 overexpression and unfavourable prognosis. CONCLUSION: Therefore, ISG15 may represent a novel breast tumour marker with prognostic significance and may be helpful in selecting patients for and predicting response to the treatment of human breast cancer
- …